Rolle’s Theorem and Negligibility of Points in Infinite Dimensional Banach Spaces
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Gómez Gil, Javier | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T16:49:12Z | |
dc.date.available | 2023-06-20T16:49:12Z | |
dc.date.issued | 1997-09-15 | |
dc.description.abstract | In this note we prove that if a differentiable function oscillates between y« and « on the boundary of the unit ball then there exists a point in the interior of the ball in which the differential of the function has norm equal or less than« . This kind of approximate Rolle’s theorem is interesting because an exact Rolle’s theorem does not hold in many infinite dimensional Banach spaces. A characterization of those spaces in which Rolle’s theorem does not hold is given within a large class of Banach spaces. This question is closely related to the existence of C1 diffeomorphisms between a Banach space X and X _ _04 which are the identity out of a ball, and we prove that such diffeomorphisms exist for every C1 smooth Banach space which can be linearly injected into a Banach space whose dual norm is locally uniformly rotund (LUR). | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14492 | |
dc.identifier.doi | 10.1006/jmaa.1997.5552 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/0022247X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57128 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.final | 495 | |
dc.page.initial | 487 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Rolle’s theorem in infinite-dimensional Banach spaces | |
dc.subject.keyword | Approximate Rolle’s theorem | |
dc.subject.keyword | Continuous norm whose dual norm is locally uniformly rotund | |
dc.subject.keyword | C1 bump function | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Rolle’s Theorem and Negligibility of Points in Infinite Dimensional Banach Spaces | |
dc.type | journal article | |
dc.volume.number | 213 | |
dcterms.references | 1. C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. PoZon. Sci. Sér. Sci. Math. 14 (1966), 27-31. 2. C. Bessaga and A. Pe1czynski, Selected tapies in infinite-dimensional topology, in "Monografie Matematyczne," PWN, Warsaw, 1975. 3. R Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, in "Pitman Monographs and Surveys in Pure and Applied Mathematics," VoL 64, Longman, Harlow, 1993. 4. T. Dobrowolski, Smooth and R-analytic negligibility of subsets and extension of homeomorphism in Banach spaces, Studia Math. 65 (1979), 115-139. 5. 1. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N S.) 1, No. 3 (1979),443-474. 6. M. Fabian, P. Hájek, and J Vanderwerff, On smooth variational principies in Banach spaces, 1. Math. Anal. Appl. 197 (1996), 153-172. 7. J Bés and J Ferrera, private communication. 8. J Ferrer, Rolle's theorem fails in 12 , Amer. Math. Month1y 103, No. 2 (1996), 161-165. 9. R R Phelps, Convex functions, monotone operators and differentiability, in "Lecture Notes in Mathematics," VoL 1364, Springer-Verlag, BerlinjNew York, 1993. 10. S. A. Shkarin, On Rolle's theorem in infinite-dimensional Banach spaces, Mat. Zametki 51, No. 3 (1992), 128-136. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 88621a6e-cb08-45cc-a43e-43a388119938 | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1