Studies of the temperature and frequency dependent impedance of an electroceramic functional oxide NTC thermistor

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
The charge transport mechanism and the macroscopic dielectric constant in polycrystalline device materials commonly exhibit several components such as electrode-sample interface, grain boundary and bulk contributions. In order to gain precise understanding of the functionality of polycrystalline electroceramic device materials it is essential to deconvolute these contributions. The paradigm of functional NTC thermistor ceramics based on thick film spinel manganates has been studied by temperature dependent alternating current impedance spectroscopy. Three typical relaxation phenomena were detected, which all showed a separated temperature dependence of resistivity consistent with thermally activated charge transport. The dominating grain boundary and the interface contributions exhibited distinctively different capacitance allowing clear identification. The composite nature of the dielectric properties in polycrystalline functional ceramics was emphasized, and impedance spectroscopy was shown to be a powerful tool to account for and model such behavior.
© 2007 WILEY-V C H VERLAG GMBH. The authors wish to thank Michael Petty for allowing use of the ac impedance spectroscopy facility. Thanks to Finlay Morrison and Ian Terry for useful discussions concerning impedance spectroscopy data analysis. Thanks to Andreas Roosen and Alfons Stiegelschmitt for the guidance provided in developing screen-printing procedures.
Unesco subjects
1. E.D. Macklen, Thermistors, Electrochemical Publications, Glasgow, Scotland 1979. 2. J.A. Becker, C.B. Green, G.L. Pearson, Bell Syst. Tech. J. 1947, 26, p 170. 3. A. Feltz and B. Neidnicht, J. Alloy. Compd. 1991, 177, 149. 4. O. Shpotyuk, M. Vakiv, O. Mrooz, I. Hadzaman, J. Plewa, H. Uphoff, H. Altenburg, Key Eng. Mater. 2002, 206-213, 1317. 5. M. Vakiv, O. Shpotyuk, O. Mrooz, I. Hadzaman, J. Eur. Ceram. Soc. 2001, 21, 1783. 6. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 1990, 2, 132. 7. M.G. Bellino, D.G. Lamas, N.E.W. de Reca, Adv. Funct. Mater. 2006, 16, 107. 8. M. Mamak, N. Coombs, G.A. Ozin, Adv. Funct. Mater. 2001, 11, 59. 9. Z.S. Macedo, A.L. Martinez, A.C. Hernandes, Mater. Res. 2003, 6, 577. 10. M. Dong, J.-M. Reau, J. Ravez, Solid State Ionics 1996, 91, 183. 11. S. Dutta, R.N.P. Choudhary, P.K. Sinha, J. Appl. Phys. 2004, 96, 1607. 12. H. Naohiro, Impedance Characterisation of Conducting Materials, PhD Thesis, University of Aberdeen, Department of Chemistry, Aberdeen 1995. 13. D.C. Sinclair, A.R. West, J. Appl. Phys. 1989, 66, 3850. 14. R. Schmidt, A. Basu, A.W. Brinkman, Phys. Rev. B 2005, 72, 115101. 15. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, P.K. Datta, Appl. Phys. Lett. 2005, 86, 073501. 16. B.I. Shklovskii, A.L. Efros, Electronic properties of doped semiconductors, Springer - Verlag, Berlin, Germany 1984. 17. J.R. Macdonald, Editor. Impedance spectroscopy, John Wiley & Sons, New York, United States 1987. 18. S. Song, F. Placido, J. Statist. Mechan.: Theor. Exper. 2004, OCT, P10018. 19. S.H. Liu, Phys. Rev. Lett. 1985, 55, 529. 20. R. Schmidt, A.W. Brinkman, J. Eur. Ceram. Soc. 2005, 25, 3027. 21. C.H. Hsu, F. Mansfeld, Corrosion 2001, 57, 747. 22. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, W. Kozlowski, S. Datta, A. Stiegelschmitt A. Roosen, Appl. Surf. Sci., in Press. 23. V.A.M. Brabers, J.C.J.M. Terhell, Phys. Status Solidi A 1982, 69, 325. 24. A. Feltz, J. Töpfer, F. Schirrmeister, J. Eur. Ceram. Soc. 1992, 9, 187. 25. R. Schmidt, A. Stiegelschmitt, A. Roosen, A.W. Brinkman, J. Eur. Ceram. Soc. 2003, 23, 1549-1558.