Publication:
Studies of the temperature and frequency dependent impedance of an electroceramic functional oxide NTC thermistor

dc.contributor.authorSchmidt, Rainer
dc.date.accessioned2023-06-20T11:01:29Z
dc.date.available2023-06-20T11:01:29Z
dc.date.issued2007-11-05
dc.description© 2007 WILEY-V C H VERLAG GMBH. The authors wish to thank Michael Petty for allowing use of the ac impedance spectroscopy facility. Thanks to Finlay Morrison and Ian Terry for useful discussions concerning impedance spectroscopy data analysis. Thanks to Andreas Roosen and Alfons Stiegelschmitt for the guidance provided in developing screen-printing procedures.
dc.description.abstractThe charge transport mechanism and the macroscopic dielectric constant in polycrystalline device materials commonly exhibit several components such as electrode-sample interface, grain boundary and bulk contributions. In order to gain precise understanding of the functionality of polycrystalline electroceramic device materials it is essential to deconvolute these contributions. The paradigm of functional NTC thermistor ceramics based on thick film spinel manganates has been studied by temperature dependent alternating current impedance spectroscopy. Three typical relaxation phenomena were detected, which all showed a separated temperature dependence of resistivity consistent with thermally activated charge transport. The dominating grain boundary and the interface contributions exhibited distinctively different capacitance allowing clear identification. The composite nature of the dielectric properties in polycrystalline functional ceramics was emphasized, and impedance spectroscopy was shown to be a powerful tool to account for and model such behavior.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33809
dc.identifier.citation1. E.D. Macklen, Thermistors, Electrochemical Publications, Glasgow, Scotland 1979. 2. J.A. Becker, C.B. Green, G.L. Pearson, Bell Syst. Tech. J. 1947, 26, p 170. 3. A. Feltz and B. Neidnicht, J. Alloy. Compd. 1991, 177, 149. 4. O. Shpotyuk, M. Vakiv, O. Mrooz, I. Hadzaman, J. Plewa, H. Uphoff, H. Altenburg, Key Eng. Mater. 2002, 206-213, 1317. 5. M. Vakiv, O. Shpotyuk, O. Mrooz, I. Hadzaman, J. Eur. Ceram. Soc. 2001, 21, 1783. 6. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 1990, 2, 132. 7. M.G. Bellino, D.G. Lamas, N.E.W. de Reca, Adv. Funct. Mater. 2006, 16, 107. 8. M. Mamak, N. Coombs, G.A. Ozin, Adv. Funct. Mater. 2001, 11, 59. 9. Z.S. Macedo, A.L. Martinez, A.C. Hernandes, Mater. Res. 2003, 6, 577. 10. M. Dong, J.-M. Reau, J. Ravez, Solid State Ionics 1996, 91, 183. 11. S. Dutta, R.N.P. Choudhary, P.K. Sinha, J. Appl. Phys. 2004, 96, 1607. 12. H. Naohiro, Impedance Characterisation of Conducting Materials, PhD Thesis, University of Aberdeen, Department of Chemistry, Aberdeen 1995. 13. D.C. Sinclair, A.R. West, J. Appl. Phys. 1989, 66, 3850. 14. R. Schmidt, A. Basu, A.W. Brinkman, Phys. Rev. B 2005, 72, 115101. 15. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, P.K. Datta, Appl. Phys. Lett. 2005, 86, 073501. 16. B.I. Shklovskii, A.L. Efros, Electronic properties of doped semiconductors, Springer - Verlag, Berlin, Germany 1984. 17. J.R. Macdonald, Editor. Impedance spectroscopy, John Wiley & Sons, New York, United States 1987. 18. S. Song, F. Placido, J. Statist. Mechan.: Theor. Exper. 2004, OCT, P10018. 19. S.H. Liu, Phys. Rev. Lett. 1985, 55, 529. 20. R. Schmidt, A.W. Brinkman, J. Eur. Ceram. Soc. 2005, 25, 3027. 21. C.H. Hsu, F. Mansfeld, Corrosion 2001, 57, 747. 22. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, W. Kozlowski, S. Datta, A. Stiegelschmitt A. Roosen, Appl. Surf. Sci., in Press. 23. V.A.M. Brabers, J.C.J.M. Terhell, Phys. Status Solidi A 1982, 69, 325. 24. A. Feltz, J. Töpfer, F. Schirrmeister, J. Eur. Ceram. Soc. 1992, 9, 187. 25. R. Schmidt, A. Stiegelschmitt, A. Roosen, A.W. Brinkman, J. Eur. Ceram. Soc. 2003, 23, 1549-1558.
dc.identifier.doi10.1002/adfm.200600878
dc.identifier.issn1616-301X
dc.identifier.officialurlhttp://dx.doi.org/10.1002/adfm.200600878
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51611
dc.issue.number16
dc.journal.titleAdvanced functional materials
dc.language.isoeng
dc.page.final3174
dc.page.initial3170
dc.publisherWILEY-V C H VERLAG GMBH
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordChemistry
dc.subject.keywordMultidisciplinary
dc.subject.keywordPhysical chemistry
dc.subject.keywordNanoscience
dc.subject.keywordNanotechnology
dc.subject.keywordMaterials Science
dc.subject.keywordApplied physics
dc.subject.keywordCondensed matter
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleStudies of the temperature and frequency dependent impedance of an electroceramic functional oxide NTC thermistor
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication4d468566-fa66-4e1c-8463-382517edca6e
relation.isAuthorOfPublication.latestForDiscovery4d468566-fa66-4e1c-8463-382517edca6e
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schmidt13 preprint.pdf
Size:
699.37 KB
Format:
Adobe Portable Document Format
Collections