Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Smooth approximation of Lipschitz functions on Riemannian manifolds

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly of infinite dimension), for every continuous epsilon : M -> (0, + infinity), and for every positive number r > 0, there exists a C-infinity smooth Lipschitz function g : M -> R such that vertical bar f(p) - g(p)vertical bar <= epsilon(p) for every p is an element of M and Lip(g) <= Lip(f) + r. Consequently, every separable Riemannian manifold is uniformly bumpable. We also present some applications of this result, such as a general version for separable Riemannian manifolds of Deville-Godefroy-Zizler's smooth variational principle.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections