Smooth approximation of Lipschitz functions on Riemannian manifolds
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Ferrera Cuesta, Juan | |
dc.contributor.author | López-Mesas Colomina, Fernando | |
dc.contributor.author | Rangel, Y. | |
dc.date.accessioned | 2023-06-20T09:31:45Z | |
dc.date.available | 2023-06-20T09:31:45Z | |
dc.date.issued | 2007-02-15 | |
dc.description.abstract | We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly of infinite dimension), for every continuous epsilon : M -> (0, + infinity), and for every positive number r > 0, there exists a C-infinity smooth Lipschitz function g : M -> R such that vertical bar f(p) - g(p)vertical bar <= epsilon(p) for every p is an element of M and Lip(g) <= Lip(f) + r. Consequently, every separable Riemannian manifold is uniformly bumpable. We also present some applications of this result, such as a general version for separable Riemannian manifolds of Deville-Godefroy-Zizler's smooth variational principle. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14761 | |
dc.identifier.doi | 10.1016/j.jmaa.2006.03.088 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022247X0600343X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49817 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.final | 1378 | |
dc.page.initial | 1370 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514.764.2 | |
dc.subject.keyword | Lipschitz function | |
dc.subject.keyword | Riemannian manifold | |
dc.subject.keyword | Smooth approximation | |
dc.subject.keyword | Hamilton-Jacobi equations | |
dc.subject.keyword | convex functions | |
dc.subject.keyword | spaces | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Smooth approximation of Lipschitz functions on Riemannian manifolds | |
dc.type | journal article | |
dc.volume.number | 326 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3 | |
relation.isAuthorOfPublication | 47cb9ee0-975c-4533-a7a4-bc341c8ac1d6 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1