Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Higher type adjunction inequalities for Donaldson invariants.

dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T18:43:56Z
dc.date.available2023-06-20T18:43:56Z
dc.date.issued2001
dc.description.abstractWe prove new adjunction inequalities for embedded surfaces in four-manifolds with non-negative self-intersection number using the Donaldson invariants. These formulas are completely analogous to the ones obtained by Ozsvath and Szabo using the Seiberg-Witten invariants. To prove these relations, we give a fairly explicit description of the structure of the Fukaya-Floer homology of a surface times a circle. As an aside, we also relate the Floer homology of a surface times a circle with the cohomology of some symmetric products of the surface.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21281
dc.identifier.doi10.2307/2118573
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/2001-353-07/S0002-9947-01-02793-3/S0002-9947-01-02793-3.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58462
dc.issue.number7
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final2654
dc.page.initial2635
dc.publisherAmerican Mathematical Society
dc.relation.projectIDPB97-1095
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keyword4-manifolds
dc.subject.keywordAdjunction inequalities
dc.subject.keywordDonaldson invariants
dc.subject.keywordFukaya-Floer homology
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleHigher type adjunction inequalities for Donaldson invariants.
dc.typejournal article
dc.volume.number353
dcterms.referencesA. Bertram and M. Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, math.AG/9803026 S. Dostoglou and D. Salamon, Self-dual instantons and holomorphic curves, Annals of Math.,139 1994, 581-640. MR 95g:58050 R. Fintushel and R. J. Stern, The blow-up formula for Donaldson invariants, Annals of Math.143 1996, 529-546. MR 97i:57036 K. Fukaya, Instanton homology for oriented 3-manifolds, Adv. Studies in Pure Mathematics,Ed. Y. Matsumoto and S. Morita. P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Dff. Geom. 41 1995, 573-734. MR 96e:57019 I. G. MacDonald, Symmetric products of an algebraic curve, Topology, 1 1962, 319-343. MR27:1445 V. Muñoz, Gluing formulae for Donaldson invariants for connected sums along surfaces, Asian J. Math. 1 1997, 785-800. MR 99m:57027 V. Muñoz, Ring structure of the Floer cohomology of Σ x S1 , Topology, 38 1999, 517-528.MR 99m:57028 V. Muñoz, Fukaya-Floer homology of Σ x S1 and applications, to appear in J. Diff. Geom. V. Muñoz, Basic classes for four-manifolds not of simple type, Comm. Anal. Geom. 8 2000,653-670. CMP 2000:16 V. Muñoz and B-L. Wang, Seiberg-Witten-Floer homology of a surface times a circle,math.DG/9905050. P. Osvath and Z. Szabo, Higher type adjunction inequalities in Seiberg-Witten theory,math.DG/0005268. E. Witten, Monopoles and four-manifolds, Math. Research Letters, 1 1994, 769-796. MR 96d:57035
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
VMuñoz60.pdf
Size:
322.03 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
VMuñoz60libre.pdf
Size:
232.69 KB
Format:
Adobe Portable Document Format

Collections