Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Approaches to learning strictly-stable weights for data with missing values

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv
Citations
Google Scholar

Citation

Beliakov, G., Gómez, D., James, S., Montero, J., Rodríguez, J.T.: Approaches to learning strictly-stable weights for data with missing values. Fuzzy Sets and Systems. 325, 97-113 (2017). https://doi.org/10.1016/j.fss.2017.02.003

Abstract

The problem of missing data is common in real-world applications of supervised machine learning such as classification and regression. Such data often gives rise to the need for functions defined for varying dimension. Here we propose optimization methods for learning the weights of quasi-arithmetic means in the context of data with missing values. We investigate some alternative approaches depending on the number of variables that have missing values and show results for several numerical experiments.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections