Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Approaches to learning strictly-stable weights for data with missing values

dc.contributor.authorBeliakov, G.
dc.contributor.authorGómez González, Daniel
dc.contributor.authorJameson, Simon S.
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.date.accessioned2023-06-17T22:08:35Z
dc.date.available2023-06-17T22:08:35Z
dc.date.issued2017
dc.description.abstractThe problem of missing data is common in real-world applications of supervised machine learning such as classification and regression. Such data often gives rise to the need for functions defined for varying dimension. Here we propose optimization methods for learning the weights of quasi-arithmetic means in the context of data with missing values. We investigate some alternative approaches depending on the number of variables that have missing values and show results for several numerical experiments.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/44881
dc.identifier.citationBeliakov, G., Gómez, D., James, S., Montero, J., Rodríguez, J.T.: Approaches to learning strictly-stable weights for data with missing values. Fuzzy Sets and Systems. 325, 97-113 (2017). https://doi.org/10.1016/j.fss.2017.02.003
dc.identifier.doi10.1016/j.fss.2017.02.003
dc.identifier.issn0165-0114
dc.identifier.officialurlhttps//doi.org/10.1016/j.fss.2017.02.003
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0165011417300635
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18125
dc.journal.titleFuzzy Sets and Systems
dc.language.isoeng
dc.page.final113
dc.page.initial97
dc.publisherElsevier Science Bv
dc.rights.accessRightsrestricted access
dc.subject.cdu510.6
dc.subject.keywordAggregation functions
dc.subject.keywordStrict stability
dc.subject.keywordMissing data
dc.subject.keywordWeight learning
dc.subject.keywordLinear programming
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleApproaches to learning strictly-stable weights for data with missing valuesen
dc.typejournal article
dc.volume.number325
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero272.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format

Collections