Approaches to learning strictly-stable weights for data with missing values
dc.contributor.author | Beliakov, G. | |
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Jameson, Simon S. | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.contributor.author | Rodríguez González, Juan Tinguaro | |
dc.date.accessioned | 2023-06-17T22:08:35Z | |
dc.date.available | 2023-06-17T22:08:35Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The problem of missing data is common in real-world applications of supervised machine learning such as classification and regression. Such data often gives rise to the need for functions defined for varying dimension. Here we propose optimization methods for learning the weights of quasi-arithmetic means in the context of data with missing values. We investigate some alternative approaches depending on the number of variables that have missing values and show results for several numerical experiments. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/44881 | |
dc.identifier.citation | Beliakov, G., Gómez, D., James, S., Montero, J., Rodríguez, J.T.: Approaches to learning strictly-stable weights for data with missing values. Fuzzy Sets and Systems. 325, 97-113 (2017). https://doi.org/10.1016/j.fss.2017.02.003 | |
dc.identifier.doi | 10.1016/j.fss.2017.02.003 | |
dc.identifier.issn | 0165-0114 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.fss.2017.02.003 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0165011417300635 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/18125 | |
dc.journal.title | Fuzzy Sets and Systems | |
dc.language.iso | eng | |
dc.page.final | 113 | |
dc.page.initial | 97 | |
dc.publisher | Elsevier Science Bv | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 510.6 | |
dc.subject.keyword | Aggregation functions | |
dc.subject.keyword | Strict stability | |
dc.subject.keyword | Missing data | |
dc.subject.keyword | Weight learning | |
dc.subject.keyword | Linear programming | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | Approaches to learning strictly-stable weights for data with missing values | en |
dc.type | journal article | |
dc.volume.number | 325 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication | ddad170a-793c-4bdc-b983-98d313c81b03 | |
relation.isAuthorOfPublication.latestForDiscovery | 4dcf8c54-8545-4232-8acf-c163330fd0fe |
Download
Original bundle
1 - 1 of 1