Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the classification of 3-bridge links.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Soc. Colombiana Mat.
Citations
Google Scholar

Citation

Abstract

Using a new way to represent links, that we call a butter y representation, we assign to each 3-bridge link diagram a sequence of six integers,collected as a triple (p=n; q=m; s=l), such that p q s 2, 0 < n p,0 < m q and 0 < l s. For each 3-bridge link there exists an innite number of 3-bridge diagrams, so we dene an order in the set (p=n; q=m; s=l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butter y of L, and call it the butter y presentation of L. This presentation extends, in a natural way, the well known Schubert classication of 2-bridge links. We obtain necessary and sucient conditions for a triple (p=n; q=m; s=l) to correspond to a 3-butter y and so, to a 3-bridge link diagram. Given a triple (p=n; q=m; s=l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butter y of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p=n; q=m; s=l) and (p 0 =n0 ; q0 =m0 ; s0 =l0) represent the same 3-bridge link?

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections