Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the classification of 3-bridge links.

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorTejada Jiménez, Débora María
dc.contributor.authorToro Villegas, Margarita María
dc.date.accessioned2023-06-20T03:32:58Z
dc.date.available2023-06-20T03:32:58Z
dc.date.issued2012
dc.description.abstractUsing a new way to represent links, that we call a butter y representation, we assign to each 3-bridge link diagram a sequence of six integers,collected as a triple (p=n; q=m; s=l), such that p q s 2, 0 < n p,0 < m q and 0 < l s. For each 3-bridge link there exists an innite number of 3-bridge diagrams, so we dene an order in the set (p=n; q=m; s=l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butter y of L, and call it the butter y presentation of L. This presentation extends, in a natural way, the well known Schubert classication of 2-bridge links. We obtain necessary and sucient conditions for a triple (p=n; q=m; s=l) to correspond to a 3-butter y and so, to a 3-bridge link diagram. Given a triple (p=n; q=m; s=l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butter y of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p=n; q=m; s=l) and (p 0 =n0 ; q0 =m0 ; s0 =l0) represent the same 3-bridge link?
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipColciencias
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21531
dc.identifier.issn0034-7426
dc.identifier.officialurlhttp://www.scm.org.co/aplicaciones/revista/revistas.php?modulo=Revista
dc.identifier.relatedurlhttp://www.scm.org.co/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43833
dc.issue.number2
dc.journal.titleRevista Colombiana de Matemáticas
dc.language.isoeng
dc.page.final144
dc.page.initial113
dc.publisherSoc. Colombiana Mat.
dc.relation.projectID1118-521-28160.
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordLinks
dc.subject.keyword3-bridge links
dc.subject.keywordBridge presentation
dc.subject.keywordLink diagram
dc.subject.keyword3-butterfly
dc.subject.keywordButterfly presentation
dc.subject.ucmGeometria algebraica
dc.subject.ucmAnálisis combinatorio
dc.subject.ucmTopología
dc.subject.unesco1201.01 Geometría Algebraica
dc.subject.unesco1202.05 Análisis Combinatorio
dc.subject.unesco1210 Topología
dc.titleOn the classification of 3-bridge links.
dc.typejournal article
dc.volume.number46
dcterms.referencesG. Burde and H. Zieschang, Knots, Walter de Gruyter, New York, USA,1985. A. Cavicchioli and B. Ruini, Special Representations for n{Bridge Links, Discrete Comput. Geom. 12 (1994), no. 1, 9-27. P. Cromwell, Knots and Links, Cambridge University Press, Cambridge,United Kingdom, 2004. D. M. Tejada H. M. Hilden, J. M. Montesinos and M. M. Toro, Mariposas y 3{variedades, Revista de la Academia Colombiana de Ciencias Exactas, Fsicas y Naturales 28 (2004), 71-78 (sp). D. M. Tejada H. M. Hilden, J. M. Montesinos and M. M. Toro, Representing 3{Manifolds by Triangulations of S 3, Revista Colombiana de Matematicas 39 (2005), no. 2, 63-86. D. M. Tejada H. M. Hilden, J. M. Montesinos and M. M. Toro, Fox Coloured Knots and Triangulations of S 3 , Math Proc. Camb. Phil. Soc. 141 (2006), no. 3, 443-463. H. M. Hilden, J. M. Montesinos, D. M. Tejada, and M. M. Toro, A new Representation of Links: Butterflies, arXiv:1203.2045v1. M. H. Hilden, J. M. Montesinos, D. M. Tejada, and M. M. Toro, Knots Butterflies and 3{Manifolds, Publicado en: Disertaciones del Seminario de Matematicas Fundamentales de la UNED (Universidad de Educacion a Distancia) (Madrid, España), vol. 33, 2005, pp. 1-22. K. Kawauchi, A Survey of Knot Theory, Birkh�auser Verlag, Basel, Switzerland, 1996. J. M. Montesinos, Sobre la representacion de variedades tridimensionales, Tech. report, Universidad Complutense de Madrid, 1978. J. M. Montesinos, Calidoscopios y 3{variedades, Tech. report, Universidad Nacional de Colombia, Medelln, Colombia, 2003. O. Morikawa, A Class of 3{Bridge Knots I, Math. Semin. Notes, Kobe Univ. 9 (1981), 349-369. O. Morikawa, A Class of 3{Bridge Knots II, Yojohama Mathematical Journal 30 (1982), 53-72. K. Murasugi, Knot Theory and its Applications, Birkh�auser, Boston. USA, 1996. S. Negami, The Minimum Crossing of 3{Bridge Links, Osaka J. Math. 21 (1984), no. 3, 477-487. S. Negami and K. Okita, The Splittability and Triviality of 3{Bridge Links, Trans. Amer. Math. Soc. 289 (1985), no. 1, 253-280.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos35.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections