On the classification of 3-bridge links.
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Tejada Jiménez, Débora María | |
dc.contributor.author | Toro Villegas, Margarita María | |
dc.date.accessioned | 2023-06-20T03:32:58Z | |
dc.date.available | 2023-06-20T03:32:58Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Using a new way to represent links, that we call a butter y representation, we assign to each 3-bridge link diagram a sequence of six integers,collected as a triple (p=n; q=m; s=l), such that p q s 2, 0 < n p,0 < m q and 0 < l s. For each 3-bridge link there exists an innite number of 3-bridge diagrams, so we dene an order in the set (p=n; q=m; s=l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butter y of L, and call it the butter y presentation of L. This presentation extends, in a natural way, the well known Schubert classication of 2-bridge links. We obtain necessary and sucient conditions for a triple (p=n; q=m; s=l) to correspond to a 3-butter y and so, to a 3-bridge link diagram. Given a triple (p=n; q=m; s=l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butter y of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p=n; q=m; s=l) and (p 0 =n0 ; q0 =m0 ; s0 =l0) represent the same 3-bridge link? | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Colciencias | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21531 | |
dc.identifier.issn | 0034-7426 | |
dc.identifier.officialurl | http://www.scm.org.co/aplicaciones/revista/revistas.php?modulo=Revista | |
dc.identifier.relatedurl | http://www.scm.org.co/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43833 | |
dc.issue.number | 2 | |
dc.journal.title | Revista Colombiana de Matemáticas | |
dc.language.iso | eng | |
dc.page.final | 144 | |
dc.page.initial | 113 | |
dc.publisher | Soc. Colombiana Mat. | |
dc.relation.projectID | 1118-521-28160. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.keyword | Links | |
dc.subject.keyword | 3-bridge links | |
dc.subject.keyword | Bridge presentation | |
dc.subject.keyword | Link diagram | |
dc.subject.keyword | 3-butterfly | |
dc.subject.keyword | Butterfly presentation | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Análisis combinatorio | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1202.05 Análisis Combinatorio | |
dc.subject.unesco | 1210 Topología | |
dc.title | On the classification of 3-bridge links. | |
dc.type | journal article | |
dc.volume.number | 46 | |
dcterms.references | G. Burde and H. Zieschang, Knots, Walter de Gruyter, New York, USA,1985. A. Cavicchioli and B. Ruini, Special Representations for n{Bridge Links, Discrete Comput. Geom. 12 (1994), no. 1, 9-27. P. Cromwell, Knots and Links, Cambridge University Press, Cambridge,United Kingdom, 2004. D. M. Tejada H. M. Hilden, J. M. Montesinos and M. M. Toro, Mariposas y 3{variedades, Revista de la Academia Colombiana de Ciencias Exactas, Fsicas y Naturales 28 (2004), 71-78 (sp). D. M. Tejada H. M. Hilden, J. M. Montesinos and M. M. Toro, Representing 3{Manifolds by Triangulations of S 3, Revista Colombiana de Matematicas 39 (2005), no. 2, 63-86. D. M. Tejada H. M. Hilden, J. M. Montesinos and M. M. Toro, Fox Coloured Knots and Triangulations of S 3 , Math Proc. Camb. Phil. Soc. 141 (2006), no. 3, 443-463. H. M. Hilden, J. M. Montesinos, D. M. Tejada, and M. M. Toro, A new Representation of Links: Butterflies, arXiv:1203.2045v1. M. H. Hilden, J. M. Montesinos, D. M. Tejada, and M. M. Toro, Knots Butterflies and 3{Manifolds, Publicado en: Disertaciones del Seminario de Matematicas Fundamentales de la UNED (Universidad de Educacion a Distancia) (Madrid, España), vol. 33, 2005, pp. 1-22. K. Kawauchi, A Survey of Knot Theory, Birkh�auser Verlag, Basel, Switzerland, 1996. J. M. Montesinos, Sobre la representacion de variedades tridimensionales, Tech. report, Universidad Complutense de Madrid, 1978. J. M. Montesinos, Calidoscopios y 3{variedades, Tech. report, Universidad Nacional de Colombia, Medelln, Colombia, 2003. O. Morikawa, A Class of 3{Bridge Knots I, Math. Semin. Notes, Kobe Univ. 9 (1981), 349-369. O. Morikawa, A Class of 3{Bridge Knots II, Yojohama Mathematical Journal 30 (1982), 53-72. K. Murasugi, Knot Theory and its Applications, Birkh�auser, Boston. USA, 1996. S. Negami, The Minimum Crossing of 3{Bridge Links, Osaka J. Math. 21 (1984), no. 3, 477-487. S. Negami and K. Okita, The Splittability and Triviality of 3{Bridge Links, Trans. Amer. Math. Soc. 289 (1985), no. 1, 253-280. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1