Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The enzymatic sphingomyelin to ceramide conversion increases the shear membrane viscosity at the air-water interface

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Whereas most of lipids have viscous properties and they do not have significant elastic features, ceramides behave as very rigid solid assemblies, displaying viscoelastic behaviour at physiological temperatures. The present review addresses the surface rheology of lipid binary mixtures made of sphingomyelin and ceramide. However, ceramide is formed by the enzymatic cleavage of sphingomyelin in cell plasma membranes. The consequences of the enzymatically-driven ceramide formation involve mechanical alterations of the embedding membrane. Here, an increase on surface shear viscosity was evidenced upon enzymatic incubation of sphingomyelin monolayers. The overall rheological data are discussed in terms of the current knowledge of the thermotropic behaviour of ceramide-containing model membranes.

Research Projects

Organizational Units

Journal Issue

Description

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (ERC grant agreement n° 338133)

Unesco subjects

Keywords

Collections