Scandium oxide deposited by high-pressure sputtering for memory devices: Physical and interfacial properties
dc.contributor.author | Lucía Mulas, María Luisa | |
dc.contributor.author | Prado Millán, Álvaro Del | |
dc.contributor.author | San Andrés Serrano, Enrique | |
dc.contributor.author | Feijoo, P.C. | |
dc.contributor.author | Toledano-Luque, M. | |
dc.date.accessioned | 2023-06-20T03:45:57Z | |
dc.date.available | 2023-06-20T03:45:57Z | |
dc.date.issued | 2010-04-15 | |
dc.description | © American Institute of Physics. The authors thank, “CAI de Técnicas Físicas,” “CAI de Espectroscopía y Espectrometría,” “CAI de Difracción de Rayos X,” and “CAI de Microscopía Electrónica” of the Universidad Complutense de Madrid for technical support. This work was possible thanks to the FPU grant (Grant No. AP2007-01157), the research projects TEC2007/63318 of the Spanish Ministry of Education, and Grant Nos. CCG07-UCM/TIC-2804 and GR58/08 (Universidad Complutense de Madrid). | |
dc.description.abstract | Scandium oxide (ScO(x)) thin layers are deposited by high-pressure sputtering (HPS) for physical and electrical characterization. Different substrates are used for comparison of several ScO(x)/Si interfaces. These substrates are chemical silicon oxide (SiO(x)), H-terminated silicon surface and silicon nitride (SiN(x)), obtained by either electron-cyclotron-resonance chemical vapor deposition or plasma enhanced nitridation of the Si surface. Transmission electron microscopy images show that a 1.7 nm thick SiO(x) layer grows when ScO(x) is deposited on H-terminated silicon surface. We demonstrate that interfacial SiN(x) has some advantages over SiO(x) used in this work: its permittivity is higher and it presents better interface quality. It also avoids Si oxidation. An improvement of one order of magnitude in the minimum of interface trap density is found for SiN(x) with respect to the SiO(x), reaching values below 2 x 10(11) cm(-2) eV(-1). HPS deposited ScO(x) films are polycrystalline with no preferential growth direction for the used deposition conditions and their properties do not depend on the substrate. This material could be a candidate for high-k material in flash memory applications. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | FPU program | |
dc.description.sponsorship | Spanish Ministry of Education | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27302 | |
dc.identifier.doi | 10.1063/1.3354096 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.3354096 | |
dc.identifier.relatedurl | http://scitation.aip.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44401 | |
dc.issue.number | 8 | |
dc.journal.title | Journal of Applied Physics | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | AP2007-01157 | |
dc.relation.projectID | TEC2007/63318 | |
dc.relation.projectID | CCG07- UCM/TIC-2804 | |
dc.relation.projectID | GR58/08 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Electron-Cyclotron-Resonance | |
dc.subject.keyword | High-K | |
dc.subject.keyword | Hafnium Oxide | |
dc.subject.keyword | Thin-Films | |
dc.subject.keyword | Dielectrics | |
dc.subject.keyword | Absorption | |
dc.subject.keyword | TiO2. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Scandium oxide deposited by high-pressure sputtering for memory devices: Physical and interfacial properties | |
dc.type | journal article | |
dc.volume.number | 107 | |
dcterms.references | 1) K.H. Kim, D.B. Farmer, J.S.M. Lehn, P.V. Rao, and R.G. Gordona, Appl. Phys. Lett., 89, 133512 (2006). 2) K.A. Pestka II, J.D. Maynard, A. Soukiassian, X.X. Xi, D.G. Schlom, Y. Le Page, M. Bernhagen, P. Reiche, and R. Uecker, Appl. Phys. Lett., 92, 111915 (2008). 3) C. Adelmann, S. Van Elshocht, A. Franquet, T. Conard, O. Richard, H. Bender, P. Lehnen, and S. De Gendt, Appl. Phys. Lett., 92, 112902 (2008). 4) R. Thomas, P. Ehrhart, M. Luysberg, M. Boese, R. Waser, M. Roeckerath, E. Rije, J. Schubert, S. Van Elshocht, and M. Caymax, Appl. Phys. Lett., 89, 232902 (2006). 5) F. Liu and G. Duscher, Appl. Phys. Lett., 91, 152906 (2007). 6) J.A. Kittl, K. Opsomer, M. Popovici, N. Menou, B. Kaczer, X.P. Wang, C. Adelmann, M.A. Pawlak, K. Tomida, A. Rothschild, B. Govoreanu, R. Degraeve, M. Schaekers, M. Zahid, A. Delabie, J. Meersschaut, W. Polspoel, S. Clima, G. Pourtois, W. Knaepen, C. Detavernier, V. V. Afanasév, T. Blomberg, D. Pierreux, J. Swerts, P. Fischer, J.W. Maes, D. Manger, W. Vandervorst, T. Conard, A. Franquet, P. Favia, H. Bender, B. Brijs, S. Van Elshocht, M. Jurczak, J. Van Houdt, and D.J. Wouters, Microelectron. Eng., 86, 1789 (2009). 7) H.H. Tippins, J. Phys. Chem. Solids, 27, 1069 (1966). 8) R.D. Shannon, J. Appl. Phys., 73, 348 (1993). 9) D.O. Klenov, L.F. Edge, D.G. Schlom, and S. Stemmer, Appl. Phys. Lett., 86, 051901 (2005). 10) S. Mori, Y.Y. Araki, M. Sato, H. Meguro, H. Tsunoda, E. Kamiya, K. Yoshikawa, N. Arai, and E. Sakagami, IEEE Trans. Electron Devices, 43, 47 (1996). 11) H.M. An, Y.J. Seo, H.D. Kim, K.C. Kim, J.G. Kim, W.J. Cho, J.H. Koh, Y.M. Sung, and T.G. Kim, Thin Solid Films, 517, 5589 (2009). 12) M. Houssa, L. Pantisano, L.A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, Mat. Sci. and Tech. R, 51, 37 (2006). 13) M.M. Frank, S. Kim, S.L. Brown, J. Bruley, M. Copel, M. Hopstaken, M. Chudzik, and V. Narayanan, Microelectron. Eng., 86, 1603 (2009). 14) M. Putkonen, M. Nieminen, J. Niinistö, and L. Niinistö, Chem. Mater., 13, 4701 (2001). 15) M.A. Navacerrada, M.L. Lucía, and F. Sánchez-Quesada, Phys. Rev. B, 61, 6422 (2000). 16) F. Laviano, L. Gozzelino, E. Mezzettia, P. Przyslupski, A. Tsarev, and A. Wisniewski, Appl. Phys. Lett., 86, 152501 (2005). 17) E. San Andrés, M. Toledano-Luque, Á. del Prado, M.A. Navacerrada, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, and E. Strub, J. Vac. Sci. Technol. A, 23, 1523 (2005). 18) S. Dueñas, H. Castán, H. Garcia, E. San Andrés, M. Toledano-Luque, I. Mártil, G. González-Díaz, K. Kukli, T. Uustare, and J. Aarik, Semicond. Sci. Technol., 20, 1044 (2005). 19)M. Toledano-Luque, M.L. Lucía, Á. del Prado, E. San Andrés, I. Mártil, and G. Gonzalez-Díaz, Appl. Phys. Lett., 91, 191502 (2007). 20) S. García, J.M. Martín, M. Fernández, I. Mártil, and G. González-Díaz, Philos. Mag. B, 73, 487 (1996). 21) E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, USA, 1982). 22) G.N. Parsons, J.H. Souk, and J. Batey, J. Appl. Phys., 70, 1553 (1991). 23) Á. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, D. Bravo, F.J. López, W. Bohne, J. Röhrich, B. Selle, and F.L. Martínez, J. Appl. Phys., 93, 8930 (2003). 24) A. Hardy, C. Adelmann, S. Van Elshocht, H. Van den Rul, M. K. Van Bael, S. De Gendt, M. D’Olieslaeger, M. Heyns, J. A. Kittl, and J. Mullens, Appl. Surf. Sci., 255, 7812 (2009). 25) N.T. McDevitt and W.L. Baun, Spectrochim. Acta, 20, 799 (1964). 26) S.J. Schneider and J.L. Waring, J. Res. Natl. Bur. Stand., Sect. A, 67A, 19 (1963). 27) M. Toledano-Luque, E. San Andrés, A. del Prado, I. Mártil, M.L. Lucía, G. González-Díaz, F.L. Martínez, W. Bohne, J. Röhrich, and E. Strub, J. Appl. Phys., 102, 044106 (2007). 28) M. Toledano-Luque, F.L. Marténez, E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, and E. Strub, Vacuum, 82, 1391 (2008). 29) M. Toledano-Luque, E. San Andrés, J. Olea, Á. del Prado, I. Mártil, W. Bohne, J. Röhrich, and E. Strub, Mater. Sci. Semicond. Process., 9, 1020 (2006). 30) J.R. Hauser, CVC Version 5.0, © 2000 NCSU Software, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC. 31) R.F. Pierret, Field Effect Devices (Prentice-Hall, Englewood Cliffs, NJ, 1990). 32) E. San Andrés, A. del Prado, I. Mártil, G. González-Díaz, and F.L. Martinez, J. Vac. Sci. Technol. B, 21, 1306 (2003). 33) H. Kim, P.C. Mchityre, C.O. Chui, K.C. Saraswat, and S. Stemmer, J. Appl. Phys., 96, 3467 (2004). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 83f99fc6-abdc-4870-9040-a54cfb6fd5bf | |
relation.isAuthorOfPublication | 7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0 | |
relation.isAuthorOfPublication | 21e27519-52b3-488f-9a2a-b4851af89a71 | |
relation.isAuthorOfPublication.latestForDiscovery | 83f99fc6-abdc-4870-9040-a54cfb6fd5bf |
Download
Original bundle
1 - 1 of 1