Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the connected components of a global semianalytic set

Loading...
Thumbnail Image

Full text at PDC

Publication date

1988

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Walter de Gruyter & co
Citations
Google Scholar

Citation

Abstract

Let M be a real analytic manifold and O(M) its ring of global analytic functions. A global semianalytic subset of M is any set Z of the form Z=⋃ i=0 r {x∈M:fi1(x)>0,⋯,fis(x)>0,gi(x)=0}, (1.1), where fij,gi∈O(M). This imitates the definitions of semialgebraic sets and semianalytic germs, and gives rise to the same old basic problems: Can the gi's in (1.1) be omitted if Z is open? Is the closure of Z global semianalytic when Z itself is? And the connected components of Z? In an earlier paper [in Algèbre, 84–95, Univ. Rennes I, Rennes, 1986] we showed that this is possible for the first two questions in case M is compact: our method relied upon the theory of the real spectrum. In this note we deal with the third question and prove Theorem 1.2: Let Z be a global semianalytic subset of a real analytic manifold M. Assume that Z is relatively compact. Then the connected components of Z are global semianalytic subsets of M. For the proof, we use again the real spectrum, plus the solution by Ch. Rotthaus of M. Artin's conjecture on the approximation property of excellent rings [Rotthaus, Invent. Math. 88 (1987), no. 1, 39–63].

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections