Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the connected components of a global semianalytic set

dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T18:41:50Z
dc.date.available2023-06-20T18:41:50Z
dc.date.issued1988
dc.description.abstractLet M be a real analytic manifold and O(M) its ring of global analytic functions. A global semianalytic subset of M is any set Z of the form Z=⋃ i=0 r {x∈M:fi1(x)>0,⋯,fis(x)>0,gi(x)=0}, (1.1), where fij,gi∈O(M). This imitates the definitions of semialgebraic sets and semianalytic germs, and gives rise to the same old basic problems: Can the gi's in (1.1) be omitted if Z is open? Is the closure of Z global semianalytic when Z itself is? And the connected components of Z? In an earlier paper [in Algèbre, 84–95, Univ. Rennes I, Rennes, 1986] we showed that this is possible for the first two questions in case M is compact: our method relied upon the theory of the real spectrum. In this note we deal with the third question and prove Theorem 1.2: Let Z be a global semianalytic subset of a real analytic manifold M. Assume that Z is relatively compact. Then the connected components of Z are global semianalytic subsets of M. For the proof, we use again the real spectrum, plus the solution by Ch. Rotthaus of M. Artin's conjecture on the approximation property of excellent rings [Rotthaus, Invent. Math. 88 (1987), no. 1, 39–63].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20294
dc.identifier.doi10.1515/crll.1988.392.137
dc.identifier.issn0075-4102
dc.identifier.officialurlhttp://www.degruyter.com/view/j/crll.1988.issue-392/crll.1988.392.137/crll.1988.392.137.xml
dc.identifier.relatedurlhttp://www.degruyter.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58337
dc.journal.titleJournal fur die Reine und Angewandte Mathematik
dc.page.final144
dc.page.initial137
dc.publisherWalter de Gruyter & co
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.cdu515.17
dc.subject.cdu515.171.5
dc.subject.keywordConnected components
dc.subject.keywordglobal semianalytic subset of a real analytic manifold
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the connected components of a global semianalytic set
dc.typejournal article
dc.volume.number392
dspace.entity.typePublication
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoveryf12f8d97-65c7-46aa-ad47-2b7099b37aa4

Download

Collections