Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

L∞(Ω) a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Birkhäuser
Citations
Google Scholar

Citation

Pardo, R. (2023). $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity. Journal Of Fixed Point Theory And Applications, 25(2). https://doi.org/10.1007/s11784-023-01048-w

Abstract

We consider a semilinear boundary value problem −Δu =f(x,u), in Ω, with Dirichlet boundary conditions, where Ω ⊂ RN with N > 2, is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide L∞(Ω) a priori estimates for weak solutions in terms of their L2∗ (Ω)-norm, where 2*= 2N/N-2 is the critical Sobolev exponent. To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having H01(Ω) uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having L∞(Ω) uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections