Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

L∞(Ω) a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity

dc.contributor.authorPardo San Gil, Rosa María
dc.date.accessioned2023-11-15T16:36:26Z
dc.date.available2023-11-15T16:36:26Z
dc.date.issued2023
dc.description.abstractWe consider a semilinear boundary value problem −Δu =f(x,u), in Ω, with Dirichlet boundary conditions, where Ω ⊂ RN with N > 2, is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide L∞(Ω) a priori estimates for weak solutions in terms of their L2∗ (Ω)-norm, where 2*= 2N/N-2 is the critical Sobolev exponent. To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having H01(Ω) uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having L∞(Ω) uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipBanco de Santander (España)/Universidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationPardo, R. (2023). $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity. Journal Of Fixed Point Theory And Applications, 25(2). https://doi.org/10.1007/s11784-023-01048-w
dc.identifier.doi10.1007/s11784-023-01048-w
dc.identifier.issn1661-7738
dc.identifier.issn1661-7746
dc.identifier.officialurlhttps//doi.org/10.1007/s11784-023-01048-w
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s11784-023-01048-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88731
dc.issue.number2
dc.journal.titleJournal of Fixed Point Theory and Application
dc.language.isoeng
dc.page.initial44 (22)
dc.publisherBirkhäuser
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103860GB-I00/ES/ASPECTOS LINEALES Y NO LINEALES EN ECUACIONES EN DERIVADAS PARCIALES. DINAMICA ASINTOTICA Y PERTURBACIONES/
dc.relation.projectIDGR58/08
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordA priori estimates
dc.subject.keywordL∞(Ω) a priori bounds
dc.subject.keywordSingular weights
dc.subject.keywordSubcritical problems
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco12 Matemáticas
dc.titleL∞(Ω) a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearityen
dc.typejournal article
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublicationb61446bc-a011-4f38-9387-63e24d811d3a
relation.isAuthorOfPublication.latestForDiscoveryb61446bc-a011-4f38-9387-63e24d811d3a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11784-023-01048-w.pdf
Size:
516.02 KB
Format:
Adobe Portable Document Format

Collections