L∞(Ω) a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity
dc.contributor.author | Pardo San Gil, Rosa María | |
dc.date.accessioned | 2023-11-15T16:36:26Z | |
dc.date.available | 2023-11-15T16:36:26Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We consider a semilinear boundary value problem −Δu =f(x,u), in Ω, with Dirichlet boundary conditions, where Ω ⊂ RN with N > 2, is a bounded smooth domain, and f is a Carathéodory function, superlinear and subcritical at infinity. We provide L∞(Ω) a priori estimates for weak solutions in terms of their L2∗ (Ω)-norm, where 2*= 2N/N-2 is the critical Sobolev exponent. To establish our results, we do not assume any restrictions on the sign of the solutions, or on the non-linearity. Our approach is based on Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities. Finally, we state sufficient conditions for having H01(Ω) uniform a priori bounds for non-negative solutions, so finally we provide suficient conditions for having L∞(Ω) uniform a priori bounds, which holds roughly speaking for superlinear and subcritical non-linearities. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Banco de Santander (España)/Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.identifier.citation | Pardo, R. (2023). $$L^\infty (\Omega )$$ a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity. Journal Of Fixed Point Theory And Applications, 25(2). https://doi.org/10.1007/s11784-023-01048-w | |
dc.identifier.doi | 10.1007/s11784-023-01048-w | |
dc.identifier.issn | 1661-7738 | |
dc.identifier.issn | 1661-7746 | |
dc.identifier.officialurl | https//doi.org/10.1007/s11784-023-01048-w | |
dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s11784-023-01048-w | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88731 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Fixed Point Theory and Application | |
dc.language.iso | eng | |
dc.page.initial | 44 (22) | |
dc.publisher | Birkhäuser | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103860GB-I00/ES/ASPECTOS LINEALES Y NO LINEALES EN ECUACIONES EN DERIVADAS PARCIALES. DINAMICA ASINTOTICA Y PERTURBACIONES/ | |
dc.relation.projectID | GR58/08 | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | A priori estimates | |
dc.subject.keyword | L∞(Ω) a priori bounds | |
dc.subject.keyword | Singular weights | |
dc.subject.keyword | Subcritical problems | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | L∞(Ω) a priori estimates for subcritical semilinear elliptic equations with a Carathéodory non-linearity | en |
dc.type | journal article | |
dc.volume.number | 25 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b61446bc-a011-4f38-9387-63e24d811d3a | |
relation.isAuthorOfPublication.latestForDiscovery | b61446bc-a011-4f38-9387-63e24d811d3a |
Download
Original bundle
1 - 1 of 1