On weakly compact operators on spaces of vector valued continuous functions
Loading...
Download
Full text at PDC
Publication date
1986
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Citation
Abstract
Let K and S be compact Hausdorff spaces and 8 a continuous function from K onto S. Then for any Banach space E the map / -» / ° 9 isometrically embeds C(S, £) as a closed subspace of C(K, E). In this note we prove that when E' has the Radon-Nikodym property, every weakly compact operator on C(S, E) can be lifted to a weakly compact operator on C( K, E). As a consequence, we prove that the compact dispersed spaces K are characterized by the fact that C(K, E) has the Dunford-Pettis property whenever E has.