Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On weakly compact operators on spaces of vector valued continuous functions

dc.contributor.authorBombal Gordón, Fernando
dc.date.accessioned2023-06-21T02:01:35Z
dc.date.available2023-06-21T02:01:35Z
dc.date.issued1986
dc.description.abstractLet K and S be compact Hausdorff spaces and 8 a continuous function from K onto S. Then for any Banach space E the map / -» / ° 9 isometrically embeds C(S, £) as a closed subspace of C(K, E). In this note we prove that when E' has the Radon-Nikodym property, every weakly compact operator on C(S, E) can be lifted to a weakly compact operator on C( K, E). As a consequence, we prove that the compact dispersed spaces K are characterized by the fact that C(K, E) has the Dunford-Pettis property whenever E has.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCAICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15111
dc.identifier.doi10.2307/2046087
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1986-097-01/S0002-9939-1986-0831394-3/S0002-9939-1986-0831394-3.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64617
dc.issue.number1
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final96
dc.page.initial93
dc.publisherAmerican Mathematical Society
dc.relation.projectID0338-84
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleOn weakly compact operators on spaces of vector valued continuous functions
dc.typejournal article
dc.volume.number97
dcterms.referencesF. Bombai and P. Cembranos, Characterization of some classes of operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146. F. Bombai and B. Rodriguez-Salinas, Some classes of operators on C(K,E). Extension and applications. Arch. Math, (to appear). I. K. Brooks and P. W. Lewis, Linear operators and vector measures. Trans. Amer. Math. Soc. 192 (1974), 139-162. P. Cembranos, On Banach spaces of vector valued continuous functions, Bull. Austral. Math. Soc. 28 (1983). 175-186. I. Diestel, A survey of results related to the Dunford-Pettis property, Proc. Conf. on Integration, Topology and Geometry in Linear Spaces, Contemporary Math., vol. 2, Amer. Math. Soc, Providence, R.I.. 1975. I. Diestel and I. I. Uhl, Ir., Vector measures, Math. Surveys, no. 15. Amer. Math. Soc, Providence, R.I.. 1977. I. Dobrakov, On representation of linear operators on C0(T, X), Czechoslovak Math. I. 21 (1971), 13-30. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C( K ), Canad. J. Math. 5(1953), 129-173 J. Horvath. Topological vector spaces und distributions, Addison-Wesley, Reading, Mass.. 1966. H. E. Lacey. 77;e isometric theory of classical Banach spaces. Springer. Berlin, 1974. L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Oxford Univ. Press. London. 1973. M. Talagrand. La propriété de Dunford-Pettis dans C(K, E) et Ll(E), Israel J. Math. 44 (1983). 317-321.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18.pdf
Size:
346.5 KB
Format:
Adobe Portable Document Format

Collections