Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Exceptional sets and Hilbert–Schmidt composition operators

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Gallardo Gutiérrez, E. A. & González, M. J. «Exceptional Sets and Hilbert–Schmidt Composition Operators». Journal of Functional Analysis, vol. 199, n.o 2, abril de 2003, pp. 287-300. DOI.org (Crossref), https://doi.org/10.1016/S0022-1236(02)00006-X.

Abstract

It is shown that an analytic map phi of the unit disk into itself inducing a Hilbert-Schmidt composition operator on the Dirichlet space has the property that the set E-phi = {e(i0)is an element ofpartial derivativeD : \phi(e(10))\ = 1 has zero logarithmic capacity. We also show that this is no longer true for compact composition operators on the Dirichlet space. Moreover, such a condition is not even satisfied by Hilbert-Schmidt composition operators on the Hardy space.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections