Exceptional sets and Hilbert–Schmidt composition operators

dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorGonzález, María J.
dc.date.accessioned2023-06-20T18:43:28Z
dc.date.available2023-06-20T18:43:28Z
dc.date.issued2003
dc.description.abstractIt is shown that an analytic map phi of the unit disk into itself inducing a Hilbert-Schmidt composition operator on the Dirichlet space has the property that the set E-phi = {e(i0)is an element ofpartial derivativeD : \phi(e(10))\ = 1 has zero logarithmic capacity. We also show that this is no longer true for compact composition operators on the Dirichlet space. Moreover, such a condition is not even satisfied by Hilbert-Schmidt composition operators on the Hardy space.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipPlan Nacional I+D
dc.description.sponsorshipJunta de Andalucía
dc.description.sponsorshipUniversidad de Cádiz
dc.description.sponsorshipDirección General de Investigación Científica y Técnica (España)
dc.description.sponsorshipConsell Interdepartamental de Recerca i Innovació Tecnològica (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21122
dc.identifier.citationGallardo Gutiérrez, E. A. & González, M. J. «Exceptional Sets and Hilbert–Schmidt Composition Operators». Journal of Functional Analysis, vol. 199, n.o 2, abril de 2003, pp. 287-300. DOI.org (Crossref), https://doi.org/10.1016/S0022-1236(02)00006-X.
dc.identifier.doi10.1016/S0022-1236(02)00006-X
dc.identifier.issn0022-1236
dc.identifier.officialurlhttps//doi.org/10.1016/S0022-1236(02)00006-X
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S002212360200006X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58436
dc.issue.number2
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.final300
dc.page.initial287
dc.publisherElsevier
dc.relation.projectIDBFM2000-0360
dc.relation.projectIDFQM-260
dc.relation.projectIDPB98-0872
dc.relation.projectID1998SRG00052
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.keywordHilbert-Schmidt operator
dc.subject.keywordComposition operator
dc.subject.keywordDirichlet space
dc.subject.keywordLogarithmic capacity
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleExceptional sets and Hilbert–Schmidt composition operatorsen
dc.typejournal article
dc.volume.number199
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublication.latestForDiscoveryf56f1f11-4b62-4a87-80df-8dc195da1201

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gallardo21oficial.pdf
Size:
196.51 KB
Format:
Adobe Portable Document Format

Collections