Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials
dc.contributor.author | Branquinho, Amílcar | |
dc.contributor.author | Foulquié-Moreno, Ana | |
dc.contributor.author | Mañas Baena, Manuel Enrique | |
dc.contributor.editor | Elsevier | |
dc.date.accessioned | 2024-01-30T11:23:53Z | |
dc.date.available | 2024-01-30T11:23:53Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue-Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given. | eng |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Fundação para a Ciência e a Tecnologia (Portugal) | |
dc.description.sponsorship | Unión Europea | |
dc.description.sponsorship | CIDMA Center for Research and Development in Mathematics and Applications (Portugal) | |
dc.description.sponsorship | Agencia Estatal de Investigación | |
dc.description.status | pub | |
dc.identifier.citation | Amílcar Branquinho, Ana Foulquié-Moreno, Manuel Mañas, Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials, Advances in Mathematics, Volume 434, 2023, 109313, ISSN 0001-8708, https://doi.org/10.1016/j.aim.2023.109313. | |
dc.identifier.doi | 10.1016/j.aim.2023.109313 | |
dc.identifier.issn | 0001-8708 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.aim.2023.109313 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/96436 | |
dc.journal.title | Advances in Mathematics | |
dc.language.iso | eng | |
dc.page.final | 109313-48 | |
dc.page.initial | 109313-1 | |
dc.publisher | Elsevier | |
dc.relation.projectID | info:eu-repo/grantAgreement/PT2020 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UIDB/04106/2020 | |
dc.relation.projectID | info:eu-repo/grantAgreement/PGC2018-096504-B-C33 | |
dc.relation.projectID | info:eu-repo/grantAgreement/PID2021-122154NB-I00 | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 517 | |
dc.subject.keyword | Bounded banded matrices | |
dc.subject.keyword | Oscillatory matrices | |
dc.subject.keyword | Totally nonnegative matrices | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 434 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0d5b5872-7553-4b33-b0e5-085ced5d8f42 | |
relation.isAuthorOfPublication.latestForDiscovery | 0d5b5872-7553-4b33-b0e5-085ced5d8f42 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2023 Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials.pdf
- Size:
- 672.36 KB
- Format:
- Adobe Portable Document Format