Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells
Loading...
Download
Official URL
Full text at PDC
Publication date
2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Ruiz-Yance, I., Siguas, J., Bardales, B., Robles-Castañeda, I., Cordova, K., Ypushima, A., Estela-Villar, E., Quintana-Criollo, C., Estacio, D., & Rodríguez, J. L. (2023). Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. Toxics, 11(10), 839. https://doi.org/10.3390/toxics11100839
Abstract
Triazole fungicides are widely used in the world, mainly in agriculture, but their abuse and possible toxic effects are being reported in some in vivo and in vitro studies that have demonstrated their danger to human health. This in vitro study evaluated the cytotoxicity, oxidative stress and proinflammation of EA.hy926 endothelial cells in response to ipconazole exposure. Using the MTT assay, ipconazole was found to produce a dose-dependent reduction (*** p < 0.001; concentrations of 20, 50 and 100 µM) of cell viability in EA.hy926 with an IC50 of 29 µM. Also, ipconazole induced a significant increase in ROS generation (** p < 0.01), caspase 3/7 (** p < 0.01), cell death (BAX, APAF1, BNIP3, CASP3 and AKT1) and proinflammatory (NLRP3, CASP1, IL1β, NFκB, IL6 and TNFα) biomarkers, as well as a reduction in antioxidant (NRF2 and GPx) biomarkers. These results demonstrated that oxidative stress, proinflammatory activity and cell death could be responsible for the cytotoxic effect produced by the fungicide ipconazole, such that this triazole compound should be considered as a possible risk factor in the development of alterations in cellular homeostasis.
Description
2022 Descuento MDPI