1st Quantum corrections to the classical partition-function for a nonrelativistic electrodynamic system

Thumbnail Image
Full text at PDC
Publication Date
Álvarez Estrada, Ramón F.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Akademie Verlag Gmbh
Google Scholar
Research Projects
Organizational Units
Journal Issue
The classical partition function for a system in thermodynamical equilibrium formed by N identical non-relativistic particles interacting through Coulomb potentials and with the dynamical dectromagnetic field is studied. It is proved that the dynamical or transverse EM degrees of freedom decouple from the particle ones. It is also shown that this decoupling does to take place in the quantum mechanical partition function. The leading quantum corrections to the classical partition function are explicitly given. Such corrections are shown, to be determined by instantaneous dipole-dipole coulombic interactions and by self-energy effects, and to receive no contribution from the interaction among different particles mediated by the dynamical EM field.
Copyright © 1999-2014 John Wiley & Sons, Inc. All Rights Reserved. The partial financial support given by Comisión Asesora de Investigación Cientifica y Técnica. Spain, is acknowledged. One of us (F.R.R.) whishes to express his gratitude to the Department of Theoretical Physics of the University of Zaragoza for hospitality.
Unesco subjects
[l] 1. BIALYNICKI-BIRULAAn,n . Phys. (N.Y.) 67, 252 (1971); Acta Phys. Austriaca XVIII, 111 [2] F. RUIZR UIZa nd R. F. ALVAREZ-ESTRAADnAn,. 1’Inst. Henri Poincarb 41. 143 (1984). [3] G. DENTE, Phys. Rev. D 12 (1733) (1975). [4] H. STAPP, Phys. Rev. D 28, 1386 (1983). [5] M. B. HALPERNan d W. SIEOEL,P hys. Rev. D 16, 2486 (1977). [6] F. ROHRLICH“F, undamental Physical Problemsof Quantum Electrodynamics”, in Poundations of Radiation Theory and Quantum Electrodynamics, edited by A. 0. Barut, Plenum Press, New York (1980). [7] C. BERNARDP,h ys. Rev. D 9, 3312 (1974). [8] L. DOLAN and R. JACRIW, Phys. Rev. D 9,3320 (1974); I. OJIMA, Ann. Phys. (N.Y.) 13i, 1 (1981); A. J. NIENI and E. W. SEMENOFAFn,n . Phys. (N.Y.) 152. 105 (1984); H. MATSUMOTO, I. OJTMAa nd H. UMEZAWAA,n n. Phys. (N.Y.) 162, 348 (1984); H. MATSUMOTFOo,r tschr. Phys. 25, 1 (1977); M. B. KISLINOER and P. D. MORLEY, Phys. Rev. D 13, 2765 (1976): P. D. MORLEYP, hys. Rev. D 17, 518 (1978); [9] R. P. FEYNMANR,e v. Mod. Phys. 20, 367 (1948). [l0] R. P. FEYNMANan, d A. R. HIBBS,“ Quantum Mechanics and Path Integrals”, McGraw-Hill, [I1] B. SIMON, “Functional Integration and Quantum Physics”, Academic Press, Xew York [12] W. THIRRINO“: Quantum Mechanics of large systems”, Springer, New York (1983). [13] R. BALESCU“E, quilibrium and non-equilibrium Statistical Mechanics”, John Wiley & Sons. New (New York (1975). [14] S. ICHIMARU“B, asic principles of plasma physics”, W. A. Benjamin Inc., Reading. Mass. (1973). [l5] R. P. FEYNMA“NSt,a tistical Mechanics”, W. A. Benjamin Inc., Reading Mass. (1972). [l6] K. HUANO“,S tatistical Mechanics”, John Wiley, New York (1963). [17] L. S. SCHULMAN“T, echniques and Applications of Path Integration”. John Wiley & Sons, New York (1981). [18] L. D. LANDlU and E. LIFSCHITZ“,S tatistical Physics”, 3rd edition, part 1, Pergamon Press, London, (1980). [19] W. WIGNERP, hys. Rev. 40,479 (1932); J. G. KIRWOODP, hys. 44,31 (1933);M . GOLDBERGER and E. h’. ADAMS, J. Chem. Phys. 20, 240 (1952). [20] E. H. LIEB and W. THIRRINQP, hys. Rev. Lett. 36, 687 (1975); J. M. COMBESR, . SCHRADER and R. SEILEE, Ann. Phys. 111, 1 (1978); K. HEPP and E. H. LIEB; Phys. Rev. A 8, 2517 (1973). [21] S. S. SCHWEBE“RA, n Introduction to Relativistic Quantum Field Theory”, Harper and Row, New York (1964). [22] In preparation.