Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

1st Quantum corrections to the classical partition-function for a nonrelativistic electrodynamic system

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorÁlvarez Estrada, Ramón F.
dc.date.accessioned2023-06-21T02:07:47Z
dc.date.available2023-06-21T02:07:47Z
dc.date.issued1986
dc.descriptionCopyright © 1999-2014 John Wiley & Sons, Inc. All Rights Reserved. The partial financial support given by Comisión Asesora de Investigación Cientifica y Técnica. Spain, is acknowledged. One of us (F.R.R.) whishes to express his gratitude to the Department of Theoretical Physics of the University of Zaragoza for hospitality.
dc.description.abstractThe classical partition function for a system in thermodynamical equilibrium formed by N identical non-relativistic particles interacting through Coulomb potentials and with the dynamical dectromagnetic field is studied. It is proved that the dynamical or transverse EM degrees of freedom decouple from the particle ones. It is also shown that this decoupling does to take place in the quantum mechanical partition function. The leading quantum corrections to the classical partition function are explicitly given. Such corrections are shown, to be determined by instantaneous dipole-dipole coulombic interactions and by self-energy effects, and to receive no contribution from the interaction among different particles mediated by the dynamical EM field.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComisión Asesora de Investigación Científica y Técnica. Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25530
dc.identifier.doi10.1002/prop.19860341103
dc.identifier.issn0015-8208
dc.identifier.officialurlhttp://dx.doi.org/10.1002/prop.19860341103
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64928
dc.issue.number11
dc.journal.titleFortschritte der Physik-Progress of Physics
dc.language.isospa
dc.page.final774
dc.page.initial753
dc.publisherAkademie Verlag Gmbh
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.title1st Quantum corrections to the classical partition-function for a nonrelativistic electrodynamic system
dc.typejournal article
dc.volume.number34
dcterms.references[l] 1. BIALYNICKI-BIRULAAn,n . Phys. (N.Y.) 67, 252 (1971); Acta Phys. Austriaca XVIII, 111 [2] F. RUIZR UIZa nd R. F. ALVAREZ-ESTRAADnAn,. 1’Inst. Henri Poincarb 41. 143 (1984). [3] G. DENTE, Phys. Rev. D 12 (1733) (1975). [4] H. STAPP, Phys. Rev. D 28, 1386 (1983). [5] M. B. HALPERNan d W. SIEOEL,P hys. Rev. D 16, 2486 (1977). [6] F. ROHRLICH“F, undamental Physical Problemsof Quantum Electrodynamics”, in Poundations of Radiation Theory and Quantum Electrodynamics, edited by A. 0. Barut, Plenum Press, New York (1980). [7] C. BERNARDP,h ys. Rev. D 9, 3312 (1974). [8] L. DOLAN and R. JACRIW, Phys. Rev. D 9,3320 (1974); I. OJIMA, Ann. Phys. (N.Y.) 13i, 1 (1981); A. J. NIENI and E. W. SEMENOFAFn,n . Phys. (N.Y.) 152. 105 (1984); H. MATSUMOTO, I. OJTMAa nd H. UMEZAWAA,n n. Phys. (N.Y.) 162, 348 (1984); H. MATSUMOTFOo,r tschr. Phys. 25, 1 (1977); M. B. KISLINOER and P. D. MORLEY, Phys. Rev. D 13, 2765 (1976): P. D. MORLEYP, hys. Rev. D 17, 518 (1978); [9] R. P. FEYNMANR,e v. Mod. Phys. 20, 367 (1948). [l0] R. P. FEYNMANan, d A. R. HIBBS,“ Quantum Mechanics and Path Integrals”, McGraw-Hill, [I1] B. SIMON, “Functional Integration and Quantum Physics”, Academic Press, Xew York [12] W. THIRRINO“: Quantum Mechanics of large systems”, Springer, New York (1983). [13] R. BALESCU“E, quilibrium and non-equilibrium Statistical Mechanics”, John Wiley & Sons. New (New York (1975). [14] S. ICHIMARU“B, asic principles of plasma physics”, W. A. Benjamin Inc., Reading. Mass. (1973). [l5] R. P. FEYNMA“NSt,a tistical Mechanics”, W. A. Benjamin Inc., Reading Mass. (1972). [l6] K. HUANO“,S tatistical Mechanics”, John Wiley, New York (1963). [17] L. S. SCHULMAN“T, echniques and Applications of Path Integration”. John Wiley & Sons, New York (1981). [18] L. D. LANDlU and E. LIFSCHITZ“,S tatistical Physics”, 3rd edition, part 1, Pergamon Press, London, (1980). [19] W. WIGNERP, hys. Rev. 40,479 (1932); J. G. KIRWOODP, hys. 44,31 (1933);M . GOLDBERGER and E. h’. ADAMS, J. Chem. Phys. 20, 240 (1952). [20] E. H. LIEB and W. THIRRINQP, hys. Rev. Lett. 36, 687 (1975); J. M. COMBESR, . SCHRADER and R. SEILEE, Ann. Phys. 111, 1 (1978); K. HEPP and E. H. LIEB; Phys. Rev. A 8, 2517 (1973). [21] S. S. SCHWEBE“RA, n Introduction to Relativistic Quantum Field Theory”, Harper and Row, New York (1964). [22] In preparation.
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizFR38.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections