Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A 3-year longitudinal study of children's comprehension of counting: Do they recognize the optional nature of nonessential counting features?

dc.contributor.authorEscudero Montero, Ana Natividad
dc.contributor.authorRodríguez Marcos, Purificación
dc.contributor.authorLago Marcos, María Oliva
dc.contributor.authorEnesco Arana, Ileana
dc.date.accessioned2024-08-21T10:21:52Z
dc.date.available2024-08-21T10:21:52Z
dc.date.issued2015-01
dc.descriptionThis investigation was funded by Ministry of Education and Science of Spain (SEJ2006-12642). Referencias bibliográficas: • Briars, D., & Siegler, R. S.(1984). A featural analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607–618. http://dx.doi.org/10.1037/0012-1649.20.4.607 • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove, UK: Psychology Press. • Dowker, A. (2008). Individual differences in numerical abilities in preschoolers. Developmental Science, 11(5), 650–654. http://dx.doi.org/10.1111/j.1467-7687.2008.00713.x • Escudero, A. (2012). Erroneous and unusual counts: A longitudinal analysis of the comprehension of counting skills (doctoral thesis). Madrid, Spain: Complutense University. Retrieved from http://eprints.ucm.es/20000/ • Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. http://dx.doi.org/10.1037/a0025510 • Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54, 372–391. http://dx.doi.org/10.1016/0022-0965(92)90026-3 • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77, 236–263. http://dx.doi.org/10.1006/jecp.2000.2561 • Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choice in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121–151. http://dx.doi.org/10.1016/j.jecp.2004.03.002 • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard Press. • Gelman, R., & Meck, E. (1983). Pre-schoolers’ counting: Principles before skills. Cognition, 13, 343–359. http://dx.doi.org/10.1016/0010-0277(83)90014-8 • Gelman, R., & Meck, E. (1986). The notion of principle: The case of counting. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 29–57). Hillsdale, NJ: Erlbaum. • Hallett, D., Nunes, T., Bryant, P., & Thorpe. (2012). Individual differences in conceptual and procedural fraction understanding: The role of abilities and school experience. Journal of Experimental Child Psychology, 112, 469–486. http://dx.doi.org/10.1016/j.jecp.2012.07.009 • Jordan, J. A., Mulhern, G., & Wylie, J.(2009). Individual differences in trajectories of arithmetical developmentin typically achieving 5-to 7-years-olds. Journal of Experimental Child Psychology, 103, 455–468. http://dx.doi.org/10.1016/j.jecp.2009.01.011 • Kamawar, D., LeFevre, J., Bisanz, J., Fast, L., Skwarchuck, S., Smith-Chant, B., et al. (2010). Knowledge of counting principles: How relevant is order irrelevance? Journal of Experimental Child Psychology, 105, 138–145. http://dx.doi.org/10.1016/j.jecp.2009.08.004 • Laupa, M., & Becker, J. (2004). Coordinating mathematical concepts with the demands of authority: Children’s reasoning about conventional and second-order logical rules. Cognitive Development, 19, 147–168. http://dx.doi.org/10.1016/j.cogdev.2003.11.001 • LeFevre, J., Smith-Chant, B., Fast, L., Skwarchuk, S., Sargla, E., Arnup, J., et al. (2006). What counts as knowing? The development of conceptual and procedural knowledge of counting from kindergarten through Grade 2. Journal of Experimental Child Psychology, 93, 285–303. http://dx.doi.org/10.1016/j.jecp.2005.11.002 • Luchins, A. S., & Luchins, E. H. (1950). New experimental attempts at preventing mechanization in problem solving. Journal of General Psychology, 42, 279–297. http://dx.doi.org/10.1080/00221309.1950.9920160 • McNeil, N. M. (2007). U-Shaped development in math: 7-Year-olds outperform 9-year-olds on equivalence problems. Developmental Psychology, 43(3), 687–695. http://dx.doi.org/10.1037/0012-1649.43.3.687 • McNeil, N. M., & Alibali, M. W. (2005). Why won’t you change your mind? Knowledge of operational patterns hinders learning and performance on equations. Child Development, 76, 1–17. http://dx.doi.org/10.1111/j.1467-8624.2005.00884.x • Rodríguez, P., Lago, M. O., Enesco, I., & Guerrero, S. (2013). Children’s understanding of counting: Kindergarten and Primary school children’s detection of errors and pseudoerrors. Journal of Experimental Child Psychology, 114, 35–46. http://dx.doi.org/10.1016/j.jecp.2012.08.005 • Sarnecka, B.W., & Carey, S.(2008). How counting represents number:What children mustlearn and when they learn it. Cognition, 108, 662–774. • Saxe, G. B., Becker, J., Sadeghpour, M., & Sicilian, S. (1989). Developmental differences in children’s understanding of number word conventions. Journal for Research in Mathematics Education, 20(5), 468–488.
dc.description.abstractThis 3-year longitudinal study examines developmental changes in children's ability to differentiate essential from nonessential counting features. Kindergarteners watched a computer-presented detection task which included three kinds of counts: correct conventional, erroneous and pseudoerrors (with and without statements of cardinal values for the sets). Children had to judge the correctness of those counts and justify their responses. Our data showed that children's explanations provided additional information and thus increased reliability of the assessment. Children were better at detecting erroneous counts than pseudoerrors and at detecting pseudoerrors with cardinal value than pseudoerrors without it. Group analysis showed that children's performance improved with age but analysis of individual differences qualified this result by identifying individual differences in developmental patterns. This study thus provides a more detailed picture of the developmental trajectories of children's comprehension of essential and nonessential counting aspects
dc.description.departmentDepto. de Investigación y Psicología en Educación
dc.description.facultyFac. de Educación
dc.description.refereedTRUE
dc.description.sponsorshipMinistry of Education and Science of Spain
dc.description.statuspub
dc.identifier.citationEscudero, A., Rodríguez, P., Lago, M. O., & Enesco, I. (2015). A 3-year longitudinal study of children's comprehension of counting: Do they recognize the optional nature of nonessential counting features?. Cognitive Development, 33, 73-83. https://doi.org/10.1016/j.cogdev.2014.05.003
dc.identifier.doi10.1016/j.cogdev.2014.05.003
dc.identifier.issn0885-2014
dc.identifier.officialurlhttps://doi.org/10.1016/j.cogdev.2014.05.003
dc.identifier.relatedurlhttps://www.sciencedirect.com/journal/cognitive-development/vol/33/suppl/C
dc.identifier.relatedurlhttps://dialnet.unirioja.es/servlet/revista?codigo=2714
dc.identifier.relatedurlhttps://produccioncientifica.ucm.es/documentos/5df8a4a22999525886b6e808
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0885201414000446?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107567
dc.journal.titleCognitive Development
dc.language.isoeng
dc.page.final83
dc.page.initial73
dc.publisherElsevier Science
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//SEJ2006-12642/ES/FORMAS TEMPRANAS DEL PREJUICIO Y SU RELACION CON EL DESARROLLO COGNITIVO Y SOCIO-EMOCIONAL/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsembargoed access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu159.922
dc.subject.cdu159.922.7
dc.subject.cdu612.65-053.2
dc.subject.cdu37.015.3
dc.subject.keywordCounting
dc.subject.keywordMathematics
dc.subject.keywordDetection task
dc.subject.keywordPseudoerrors
dc.subject.keywordIndividual differences
dc.subject.keywordDevelopmental trajectory
dc.subject.keywordLongitudinal
dc.subject.ucmPsicología evolutiva
dc.subject.ucmPsicología de la educación (Psicología)
dc.subject.unesco6102.01 Psicología Evolutiva
dc.subject.unesco6102.04 Psicología Escolar
dc.titleA 3-year longitudinal study of children's comprehension of counting: Do they recognize the optional nature of nonessential counting features?
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number33
dspace.entity.typePublication
relation.isAuthorOfPublication226f5693-96d7-4529-abf3-b7229de290bc
relation.isAuthorOfPublicationaa18842c-0aab-4e18-a40c-6b7a012b716e
relation.isAuthorOfPublicationf821d022-a4bc-4bf1-8a7b-138e09f8ea9c
relation.isAuthorOfPublicationbbb446eb-9b50-46d9-93ef-90a5a33c8454
relation.isAuthorOfPublication.latestForDiscovery226f5693-96d7-4529-abf3-b7229de290bc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Escudero et al_2015_CD.pdf
Size:
483.7 KB
Format:
Adobe Portable Document Format

Collections