Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Osculating degeneration of curves

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Citations
Google Scholar

Citation

Abstract

The main objects of this paper are osculating spaces of order m to smooth algebraic curves, with the property of meeting the curve again. We prove that the only irreducible curves with an infinite number of this type of osculating spaces of order m are curves in Pm+1 Whose degree n is greater than m + 1. This is a generalization of the result and proof of Kaji (Kaji, H. (1986). On the tangentially degenerate curves. J. London Math. Soc. 33(2)-430-440) that corresponds to the case m = 1. We also obtain an enumerative formula for the number of those osculating spaces to curves in Pm+2. The case m = 1 of it is a classical formula proved with modern techniques. by Le Barz (Le Barz, P. (1982). Formules multisecantes pour les courbes gauches quelconques. In: Enumerative Geometry and Classical Algebraic Geometry. Prog. in Mathematics 24, Birkhauser, pp. 165-197).

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections