Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Osculating degeneration of curves

dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.contributor.authorGonzález Pascual, Sonia
dc.date.accessioned2023-06-20T16:59:18Z
dc.date.available2023-06-20T16:59:18Z
dc.date.issued2003
dc.description.abstractThe main objects of this paper are osculating spaces of order m to smooth algebraic curves, with the property of meeting the curve again. We prove that the only irreducible curves with an infinite number of this type of osculating spaces of order m are curves in Pm+1 Whose degree n is greater than m + 1. This is a generalization of the result and proof of Kaji (Kaji, H. (1986). On the tangentially degenerate curves. J. London Math. Soc. 33(2)-430-440) that corresponds to the case m = 1. We also obtain an enumerative formula for the number of those osculating spaces to curves in Pm+2. The case m = 1 of it is a classical formula proved with modern techniques. by Le Barz (Le Barz, P. (1982). Formules multisecantes pour les courbes gauches quelconques. In: Enumerative Geometry and Classical Algebraic Geometry. Prog. in Mathematics 24, Birkhauser, pp. 165-197).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16624
dc.identifier.doi10.1081/AGB-120022445
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1081/AGB-120022445
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57577
dc.issue.number8
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final3845
dc.page.initial3829
dc.publisherTaylor & Francis
dc.relation.projectIDBFM2000-0621
dc.rights.accessRightsrestricted access
dc.subject.cdu512.774
dc.subject.keywordosculating space
dc.subject.keywordHilbert scheme of points
dc.subject.keywordcurve
dc.subject.keywordenumerative formula
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOsculating degeneration of curves
dc.typejournal article
dc.volume.number31
dcterms.referencesArbarello, E., Cornalba, M., Griffiths, Ph., Harris, J. (1977). Geometry of Algebraic Curves. Vol. I. New York, Springer-Verlag. Hartshorne, R. (1977). Algebraic Geometry. Graduate Texts in Mathematics, Berlin: Springer. Iarrobino, A. (1987). Hilbert scheme of points: Overview of last ten years. In: Algebraic Geometry, Proc. Symp. Pure Maths. No. 46, part 2, AMS, pp. 297–320. Kaji, H. (1986). On the tangentially degenerate curves. J. London Math. Soc. 33(2):430–440. Kleiman, S. L.(1976).The enumerative theory of singularities.In: Real and Complex Singularities. Oslo. Sijthoff and Noordhoff, pp. 287–396. Le Barz, P. (1982). Formules multisécantes pour les courbes gauches quelconques. In: Enumerative Geometry and Classical Algebraic Geometry. Prog. in Mathematics 24, Birkhäuser, pp. 165–197. Le Barz, P. (1987). Quelques calculs dans les variétés d'alignements. Adv. in Math. 64(2):87–117. Mallavibarrena, R. (1986). Validité de la formule classique des trisécantes stationnaires. C. R. Acad. Sci. Paris Sér. I Math. 303:799–802. Piene, R. (1976). Numerical characters of a curve in projective N-Space. In: Real and Complex Singularities. Oslo: Sijthoff and Noordhoff, pp. 475–495 Pohl, W. F. (1962). Differential geometry of higher order. Topology 1:169–211. Vassallo, V. (1994). Justification de la méthode fonctionelle pour les courbes gauches. Acta Math. 172:257–297.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Malla03.pdf
Size:
655.12 KB
Format:
Adobe Portable Document Format

Collections