Easy and Versatile Technique for the Preparation of Stable and Active Lipase-Based CLEA-Like Copolymers by Using Two Homofunctional Cross-Linking Agents: Application to the Preparation of Enantiopure Ibuprofen
Loading...
Download
Official URL
Full text at PDC
Publication date
2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Citation
Khiari, O.; Bouzemi, N.; Sánchez-Montero, J.M.; Alcántara, A.R. Easy and Versatile Technique for the Preparation of Stable and Active Lipase-Based CLEA-like Copolymers by Using Two Homofunctional Cross-Linking Agents: Application to the Preparation of Enantiopure Ibuprofen. Int. J. Mol. Sci. 2023, 24, 13664. https://doi.org/10.3390/ijms241713664
Abstract
An easy and versatile method was designed and applied successfully to obtain access to lipase-based cross-linked-enzyme aggregate-like copolymers (CLEA-LCs) using one-pot, consecutive cross-linking steps using two types of homobifunctional cross-linkers (glutaraldehyde and putrescine), mediated with amine activation through pH alteration (pH jump) as a key step in the process. Six lipases were utilised in order to assess the effectiveness of the technique, in terms of immobilization yields, hydrolytic activities, thermal stability and application in kinetic resolution. A good retention of catalytic properties was found for all cases, together with an important thermal and storage stability improvement. Particularly, the CLEA-LCs derived from Candida rugosa lipase showed an outstanding behaviour in terms of thermostability and capability for catalysing the enantioselective hydrolysis of racemic ibuprofen ethyl ester, furnishing the eutomer (S)-ibuprofen with very high conversion and enantioselectivity.