Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Choosing the best Rukhin goodness-of-fit statistics

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

The testing for goodness-of-fit in multinomial sampling contexts is usually based on the asymptotic distribution of Pearson-type chi-squared statistics. However, approximations are not justified for those cases where sample size and number of cells permit the use of adequate algorithms to calculate the exact distribution of test statistics in a reasonable time. In particular, Rukhin statistics, containing chi(2) and Neyman's modified chi(2) statistics, are considered for testing uniformity. Their exact distributions are calculated for different sample sizes and number of cells. Several exact power comparisons are carried out to analyse the behaviour of selected statistics. As a result of the numerical study some recommendations are given. Conclusions may be extended to testing the goodness of fit to a given absolutely continuous cumulative distribution function.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections