Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Choosing the best Rukhin goodness-of-fit statistics

dc.contributor.authorMarhuenda García, Yolanda
dc.contributor.authorMorales González, Domingo
dc.contributor.authorPardo Llorente, Julio Ángel
dc.contributor.authorPardo Llorente, María del Carmen
dc.date.accessioned2023-06-20T09:43:10Z
dc.date.available2023-06-20T09:43:10Z
dc.date.issued2005-06-01
dc.description.abstractThe testing for goodness-of-fit in multinomial sampling contexts is usually based on the asymptotic distribution of Pearson-type chi-squared statistics. However, approximations are not justified for those cases where sample size and number of cells permit the use of adequate algorithms to calculate the exact distribution of test statistics in a reasonable time. In particular, Rukhin statistics, containing chi(2) and Neyman's modified chi(2) statistics, are considered for testing uniformity. Their exact distributions are calculated for different sample sizes and number of cells. Several exact power comparisons are carried out to analyse the behaviour of selected statistics. As a result of the numerical study some recommendations are given. Conclusions may be extended to testing the goodness of fit to a given absolutely continuous cumulative distribution function.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17494
dc.identifier.doi10.1016/j.csda.2004.06.003
dc.identifier.issn0167-9473
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0167947304001756
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50242
dc.issue.number3
dc.journal.titleComputational Statistics and Data Analysis
dc.language.isoeng
dc.page.final662
dc.page.initial643
dc.publisherElsevier Science
dc.relation.projectIDBMF2003-00892
dc.relation.projectIDBMF2003-04820
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordGoodness-of-fit statistics
dc.subject.keywordRukhin’s divergence
dc.subject.keywordAlgorithms
dc.subject.keywordExact distribution function
dc.subject.keywordExact powers
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleChoosing the best Rukhin goodness-of-fit statistics
dc.typejournal article
dc.volume.number49
dcterms.referencesAli, S.M., Silvey, S.D., 1966.A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. B 26, 131–142. Cressie, N., Read, T.R.C., 1984. Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. B 46, 440–464. Csiszár, I., 1963. Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität on MarkhoffschenKetten. Publications of the Mathematical Institute of HungarianAcademy of Sciences, Series A, Vol. 8, pp. 85–108. Liese, F., Vajda, I., 1987. Convex Statistical Distances. Teubner, Leipzig. Marhuenda, M.A., Marhuenda, Y., Morales, D., 2003a. On the computation of the exact distribution of power divergence test statistics. Kybernetika 39 (1), 55–74. Marhuenda,Y.,Morales, D., Pardo, J.A., Pardo, M.C., 2003b. Exact distribution function for the Rukhin goodnessof-fit statistics. Technical report I-2003-13, Operation Research Center, Miguel Hernández University of Elche. Menéndez, M.L., Pardo, J.A., Pardo, L., Pardo, M.C., 1997. Asymptotic approximations for the distribution of the (h,)—divergence goodness-of-fit statistic: applications to Renyi’s statistics. Kybernetes 26 (4), 442–452. Pardo, J.A., Pardo, M.C., 1999. Small-sample comparisons for the Rukhin goodness-of-fit-statistics. Statist. Pap. 40, 159–174. Pearson, K., 1900. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos.Mag. 50, 157–172. Rao, C.R., 1965. Linear Statistical Inference and its Applications.Wiley, NewYork. Read, T.R.C., Cressie, N.A.C., 1988. Goodness-of-fit Statistics for Discrete Multivariate Data. Springer,NewYork. Rukhin, A.L., 1994. Optimal estimatorforthe mixture parameterby the method of moments and information affinity. in: Transactions of the 12th Prague Conference on Information Theory.pp. 214–219. Vajda, I., 1989. Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht. Zografos, K., Ferentinos, K., Papaioannou, T., 1990. phi-divergence statistics: sampling properties and multinomial goodness of fit and divergence tests. Commun. Statist.—Theory Methods 19 (5), 1785–1802.
dspace.entity.typePublication
relation.isAuthorOfPublication4d5cedd9-975b-43fb-bc2e-f55dec36a2bf
relation.isAuthorOfPublication5e051d08-2974-4236-9c25-5e14369a7b61
relation.isAuthorOfPublication.latestForDiscovery4d5cedd9-975b-43fb-bc2e-f55dec36a2bf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoJulio13.pdf
Size:
223.32 KB
Format:
Adobe Portable Document Format

Collections