Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Tropical conics for the layman

dc.book.titleTropical and idempotent mathematics : International Workshop Tropical-07, Tropical and idempotent mathematics, August 25-30, 2007, Independent University of Moscow and Laboratory J.-V.Poncelet
dc.contributor.authorAnsola, M.
dc.contributor.authorPuente Muñoz, María Jesús De La
dc.contributor.editorLitvinov, G. L.
dc.date.accessioned2023-06-20T05:44:39Z
dc.date.available2023-06-20T05:44:39Z
dc.date.issued2009
dc.descriptionInternational Workshop Tropical-07 (2007 : Moscow, Russia)
dc.description.abstractWe present a simple and elementary procedure to sketch the tropical conic given by a degree-two homogeneous tropical polynomial. These conics are trees of a very particular kind. Given such a tree, we explain how to compute a defining polynomial. Finally, we characterize those degree-two tropical polynomials which are reducible and factorize them. We show that there exist irreducible degree-two tropical polynomials giving rise to pairs of tropical lines.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17541
dc.identifier.doihttp://arxiv.org/abs/math/0702143
dc.identifier.isbn978-0-8218-4782-4
dc.identifier.issn0271-4132
dc.identifier.relatedurlhttp://arxiv.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45378
dc.issue.number495
dc.journal.titleTropical and idempotent mathematics
dc.language.isoeng
dc.page.final101
dc.page.initial87
dc.page.total382
dc.publication.placeProvidence, RI
dc.publisherAmerican Mathematical Society
dc.relation.ispartofseriesContemporary Mathematics
dc.relation.projectID2005–02865
dc.relation.projectID910444.
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordTropical conics
dc.subject.keywordfactorization of tropical polynomials
dc.subject.keywordtropically singular matrix.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleTropical conics for the layman
dc.typebook part
dcterms.referencesM. Akian, R. Bapat and S. Gaubert, Max–plus algebra, in L.Hogben, R. Brualdi,A. Greenbaum and R. Mathias (eds.), Handbook of linear algebra, Chapman and Hall, 2006. M. Ansola, Propiedades m´etricas de las conicas tropicales, Trabajo de investigacion DEA, Facultad de Matematicas, UCM, (2006). M. Ansola and M.J. de la Puente, A note on tropical triangles in the plane, to appear in Acta Math. Sinica (Engl. ser.), (2008). F.L. Baccelli, G. Cohen, G.J. Olsder and J.P.Quadrat,Syncronization and linearity,JohnWiley, 1992. P. Butkovic, Max–algebra: the linear algebra of combinatorics?, Linear Algebra Appl., 367, (2003), 313–335. R. Cuninghame–Green, Minimax algebra, LNEMS, 166, Springer, 1970. R.A. Cuninghame–Green and P. Butkovic, Bases in max-algebra, Linear Algebra Appl. 389, (2004) 107–120. M. Develin and B. Sturmfels, Tropical convexity, Doc. Math. 9, (2004), 1–27;Erratum in Doc. Math. 9, 205–206 (2004). M. Einsiedler,M. Kapranov and D. Lind, Non–archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157. A. Dickenstein, E. Feichtner and B. Sturmfels, Tropical discriminants, JAMS, 20 (2007), 1111-1133. L.R. Foulds, Graph theory applications, Springer, 1992. A. Gathmann, Tropical algebraic geometry,Jahresbericht der DMV, 108, n.1,(2006), 3–32. A. Gathmann and H. Markwig, The numbers of tropical plane curves thorugh points in general position, J. Reine Angew. Math. 602 (2007), 155-177. S. Gaubert and Max Plus, Methods and applications of (max,+) linear algebra,in R. Reischuk and M. Morvan,(eds.), STACS’97, 1200 in LNCS, 261–282,Lubeck, March 1997,Springer. I.M Gelfand, M.M. Kapranov and A. V.Zelevinsky,Discriminants, resultants and multidimensional determinants, Birkhauser, 1994. J. Gunawardena (ed.), Idempotency, Publications of the Newton Institute, Cambridge U. Press, 1998. F. Harary, Graph theory, Addison–Wesley, 1972. B.Y. Hsie and Z.B. Liang, Toric rigid spaces, Acta Math. Sinica (Engl. ser.) 23,n.9, (2007), 1621–1628. I. Itenberg, G. Mikhalkin and E. Shustin, Tropical algebraic geometry,Birkhauser, 2007. Z. Izhakian, Duality of tropical curves,arXiv:math/0503691, (2005). A.N. Jensen, H. Markwig and T. Markwig, An algorithm for lifting points in a tropical variety, Collect. Math. 59 (2008), 129-165. M. Joswig, Tropical halfspaces, in J.E. Goodman, J. Pach and E.Welzl, (eds.), in Combinatorial and Computational Geometry, Cambridge University Press, 2005,MSRI Publications Vol. 52., 409–431. K.H. Kim and F.W. Roush, Factorization of polynomials in one variable over the tropical semiring,arXiv:mathCO/0501167, 2005. G.L. Litvinov and V.P. Maslov, (eds.) Idempotent mathematics and mathematical physics, Proceedings Vienna 2003, American Mathematical Society, Contemp.Math. 377, (2005). G. Mikhalkin, Decomposition into pairs–of–pants for complex algebraic hypersurfaces,Topology, 43, (2004), 10035–1065. [26] G. Mikhalkin, Enumerative tropical algebraic geometry in R2, J. Amer. Math.Soc. 18, n.2, (2005), 313–378. G. Mikhalkin and I. Zharkov, Tropical curves, their jacobians and theta functions,arXiv:math/0612267, (2007). G. Mikhalkin, Tropical geometry and its applications, in Invited lectures, vol. II,Proceedings of the ICM, Madrid, 2006, (M. Sanz–Sol´e et al. eds.) 827–852. G. Mikhalkin, What is a tropical curve?, Notices AMS, April 2007, 511–513. T. Nishinou and B. Siebert, Toric degenerations of toric varieties and tropical curves, arXiv:math/0409060, (2006). J. Richter–Gebert, B. Sturmfels and T. Theobald, First steps in tropical geometry,in [24], 289–317. E. Shustin, Patchworking singular algebraic curves, non–archimedean amoebas and enumerative geometry, Algebra i Analiz 17, n.2, 170–214, (2005). E. Shustin, A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces, J. Algebraic Geom. 15, n. 2, (2006), 285–322. D. Speyer and B. Sturmfels, The tropical grassmannian, Adv. Geom. 4, 389–411, (2004).
dspace.entity.typePublication
relation.isAuthorOfPublication630e203d-3f7d-46d6-a43c-cb07da8c4b71
relation.isAuthorOfPublication.latestForDiscovery630e203d-3f7d-46d6-a43c-cb07da8c4b71

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Puente04.pdf
Size:
167.87 KB
Format:
Adobe Portable Document Format