Tropical conics for the layman
dc.book.title | Tropical and idempotent mathematics : International Workshop Tropical-07, Tropical and idempotent mathematics, August 25-30, 2007, Independent University of Moscow and Laboratory J.-V.Poncelet | |
dc.contributor.author | Ansola, M. | |
dc.contributor.author | Puente Muñoz, María Jesús De La | |
dc.contributor.editor | Litvinov, G. L. | |
dc.date.accessioned | 2023-06-20T05:44:39Z | |
dc.date.available | 2023-06-20T05:44:39Z | |
dc.date.issued | 2009 | |
dc.description | International Workshop Tropical-07 (2007 : Moscow, Russia) | |
dc.description.abstract | We present a simple and elementary procedure to sketch the tropical conic given by a degree-two homogeneous tropical polynomial. These conics are trees of a very particular kind. Given such a tree, we explain how to compute a defining polynomial. Finally, we characterize those degree-two tropical polynomials which are reducible and factorize them. We show that there exist irreducible degree-two tropical polynomials giving rise to pairs of tropical lines. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MTM | |
dc.description.sponsorship | UCM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17541 | |
dc.identifier.doi | http://arxiv.org/abs/math/0702143 | |
dc.identifier.isbn | 978-0-8218-4782-4 | |
dc.identifier.issn | 0271-4132 | |
dc.identifier.relatedurl | http://arxiv.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/45378 | |
dc.issue.number | 495 | |
dc.journal.title | Tropical and idempotent mathematics | |
dc.language.iso | eng | |
dc.page.final | 101 | |
dc.page.initial | 87 | |
dc.page.total | 382 | |
dc.publication.place | Providence, RI | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Contemporary Mathematics | |
dc.relation.projectID | 2005–02865 | |
dc.relation.projectID | 910444. | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Tropical conics | |
dc.subject.keyword | factorization of tropical polynomials | |
dc.subject.keyword | tropically singular matrix. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | Tropical conics for the layman | |
dc.type | book part | |
dcterms.references | M. Akian, R. Bapat and S. Gaubert, Max–plus algebra, in L.Hogben, R. Brualdi,A. Greenbaum and R. Mathias (eds.), Handbook of linear algebra, Chapman and Hall, 2006. M. Ansola, Propiedades m´etricas de las conicas tropicales, Trabajo de investigacion DEA, Facultad de Matematicas, UCM, (2006). M. Ansola and M.J. de la Puente, A note on tropical triangles in the plane, to appear in Acta Math. Sinica (Engl. ser.), (2008). F.L. Baccelli, G. Cohen, G.J. Olsder and J.P.Quadrat,Syncronization and linearity,JohnWiley, 1992. P. Butkovic, Max–algebra: the linear algebra of combinatorics?, Linear Algebra Appl., 367, (2003), 313–335. R. Cuninghame–Green, Minimax algebra, LNEMS, 166, Springer, 1970. R.A. Cuninghame–Green and P. Butkovic, Bases in max-algebra, Linear Algebra Appl. 389, (2004) 107–120. M. Develin and B. Sturmfels, Tropical convexity, Doc. Math. 9, (2004), 1–27;Erratum in Doc. Math. 9, 205–206 (2004). M. Einsiedler,M. Kapranov and D. Lind, Non–archimedean amoebas and tropical varieties, J. Reine Angew. Math. 601 (2006), 139–157. A. Dickenstein, E. Feichtner and B. Sturmfels, Tropical discriminants, JAMS, 20 (2007), 1111-1133. L.R. Foulds, Graph theory applications, Springer, 1992. A. Gathmann, Tropical algebraic geometry,Jahresbericht der DMV, 108, n.1,(2006), 3–32. A. Gathmann and H. Markwig, The numbers of tropical plane curves thorugh points in general position, J. Reine Angew. Math. 602 (2007), 155-177. S. Gaubert and Max Plus, Methods and applications of (max,+) linear algebra,in R. Reischuk and M. Morvan,(eds.), STACS’97, 1200 in LNCS, 261–282,Lubeck, March 1997,Springer. I.M Gelfand, M.M. Kapranov and A. V.Zelevinsky,Discriminants, resultants and multidimensional determinants, Birkhauser, 1994. J. Gunawardena (ed.), Idempotency, Publications of the Newton Institute, Cambridge U. Press, 1998. F. Harary, Graph theory, Addison–Wesley, 1972. B.Y. Hsie and Z.B. Liang, Toric rigid spaces, Acta Math. Sinica (Engl. ser.) 23,n.9, (2007), 1621–1628. I. Itenberg, G. Mikhalkin and E. Shustin, Tropical algebraic geometry,Birkhauser, 2007. Z. Izhakian, Duality of tropical curves,arXiv:math/0503691, (2005). A.N. Jensen, H. Markwig and T. Markwig, An algorithm for lifting points in a tropical variety, Collect. Math. 59 (2008), 129-165. M. Joswig, Tropical halfspaces, in J.E. Goodman, J. Pach and E.Welzl, (eds.), in Combinatorial and Computational Geometry, Cambridge University Press, 2005,MSRI Publications Vol. 52., 409–431. K.H. Kim and F.W. Roush, Factorization of polynomials in one variable over the tropical semiring,arXiv:mathCO/0501167, 2005. G.L. Litvinov and V.P. Maslov, (eds.) Idempotent mathematics and mathematical physics, Proceedings Vienna 2003, American Mathematical Society, Contemp.Math. 377, (2005). G. Mikhalkin, Decomposition into pairs–of–pants for complex algebraic hypersurfaces,Topology, 43, (2004), 10035–1065. [26] G. Mikhalkin, Enumerative tropical algebraic geometry in R2, J. Amer. Math.Soc. 18, n.2, (2005), 313–378. G. Mikhalkin and I. Zharkov, Tropical curves, their jacobians and theta functions,arXiv:math/0612267, (2007). G. Mikhalkin, Tropical geometry and its applications, in Invited lectures, vol. II,Proceedings of the ICM, Madrid, 2006, (M. Sanz–Sol´e et al. eds.) 827–852. G. Mikhalkin, What is a tropical curve?, Notices AMS, April 2007, 511–513. T. Nishinou and B. Siebert, Toric degenerations of toric varieties and tropical curves, arXiv:math/0409060, (2006). J. Richter–Gebert, B. Sturmfels and T. Theobald, First steps in tropical geometry,in [24], 289–317. E. Shustin, Patchworking singular algebraic curves, non–archimedean amoebas and enumerative geometry, Algebra i Analiz 17, n.2, 170–214, (2005). E. Shustin, A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces, J. Algebraic Geom. 15, n. 2, (2006), 285–322. D. Speyer and B. Sturmfels, The tropical grassmannian, Adv. Geom. 4, 389–411, (2004). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 630e203d-3f7d-46d6-a43c-cb07da8c4b71 | |
relation.isAuthorOfPublication.latestForDiscovery | 630e203d-3f7d-46d6-a43c-cb07da8c4b71 |
Download
Original bundle
1 - 1 of 1