Weakly Lefschetz symplectic manifolds.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Mathematical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
For a symplectic manifold, the harmonic cohomology of symplectic divisors (introduced by Donaldson, 1996) and of the more general symplectic zero loci (introduced by Auroux, 1997) are compared with that of its ambient space. We also study symplectic manifolds satisfying a weakly Lefschetz property, that is, the s–Lefschetz property. In particular, we consider the symplectic blow-ups CPm of the complex projective space CPm along weakly Lefschetz symplectic submanifolds M ⊂ CPm. As an application we construct, for each even integer s ≥ 2, compact symplectic manifolds which are s–Lefschetz but not (s + 1)–Lefschetz.
D. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom. Funct. Anal. 7 (1997), 971–995. C. Benson, C.S. Gordon, Kahler and symplectic structures on nilmanifolds, Topology 27 (1988),513–518. J.L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93–114. G.R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Preprint math.SG/0403067. S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Diff. Geom. 44 (1996),666–705. M. Fern´andez, M. Gotay, A. Gray: Compact parallelizable four dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209–1212. M. Fern´andez, M. de Leon and M. Saralegui, A six dimensional compact symplectic solvmanifold without Kahler structures, Osaka J. Math. 33 (1996), 19–35. M. Fernandez, V. Muñoz, J. Santisteban, Cohomologically K¨ahler manifolds with no Kahler metric,Internat. J. Math. Math. Sc. 52 (2003), 3315–3325. M. Fernandez, V. Muñoz, Formality of Donaldson submanifolds, Math. Zeit. (2005), to appear. R. Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995), 527–597. M. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes Congres Intern. Math. (Nice 1970), Gauthier–Villars, Paris, No. 2, 221–225, 1971. M. Gromov, Partial differential relations, Springer–Verlag, Berlin, 1986. A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo 8 (1960), 298–331. R. Ibañez, Y. Rudyak, A. Tralle, L. Ugarte, On symplectically harmonic forms on 6–dimensional nilmanifolds, Comment. Math. Helv. 76 (2001), 89–109. K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964),751–798. J.L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les Math. d´Aujour d´Hui, Asterisque hors-serie (1985), 251–271. P. Libermann and C. Marle, Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht,1987. A. Lichnerowicz, Les vari´et´es de Poisson et les algebres de Lie associees, J. Diff. Geom. 12 (1977),253–300. A.I. Mal’cev, A class of homogeneous spaces, Izvestia Akademii Nauk S.S.S.R. Seriya Matematiceskaya 13 (1949), 9–32. English translation: Amer. Math. Soc. Transl. n. 39,1951. O.Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995),1–9. D. McDuff, Examples of symplectic simply connected manifolds with no Kahler structure, J. Diff.Geom. 20 (1984), 267–277. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976),467–468. D. Tischler, Closed 2–forms and an embedding theorem for symplectic manifolds, J. Diff. Geom. 12 (1977), 229–235. T. Yamada, Harmonic cohomology groups of compact symplectic nilmanifolds, Osaka J. Math. 39 (2002), 363–381.