Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weakly Lefschetz symplectic manifolds.

dc.contributor.authorFernández, M.
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorUgarte, L.
dc.date.accessioned2023-06-20T10:34:31Z
dc.date.available2023-06-20T10:34:31Z
dc.date.issued2007
dc.description.abstractFor a symplectic manifold, the harmonic cohomology of symplectic divisors (introduced by Donaldson, 1996) and of the more general symplectic zero loci (introduced by Auroux, 1997) are compared with that of its ambient space. We also study symplectic manifolds satisfying a weakly Lefschetz property, that is, the s–Lefschetz property. In particular, we consider the symplectic blow-ups CPm of the complex projective space CPm along weakly Lefschetz symplectic submanifolds M ⊂ CPm. As an application we construct, for each even integer s ≥ 2, compact symplectic manifolds which are s–Lefschetz but not (s + 1)–Lefschetz.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMCyT
dc.description.sponsorshipUPV
dc.description.sponsorshipUPV
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21090
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/2007-359-04/S0002-9947-06-04114-6/S0002-9947-06-04114-6.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50607
dc.issue.number4
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final1873
dc.page.initial1851
dc.publisherAmerican Mathematical Society
dc.relation.projectIDBFM2001-3778-C03-02/03
dc.relation.projectID00127.310-E-14813/2002,
dc.relation.projectID00127.310-E-15909/2004
dc.relation.projectIDMTM2004-07090-C03-01.
dc.rights.accessRightsopen access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleWeakly Lefschetz symplectic manifolds.
dc.typejournal article
dc.volume.number359
dcterms.referencesD. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom. Funct. Anal. 7 (1997), 971–995. C. Benson, C.S. Gordon, Kahler and symplectic structures on nilmanifolds, Topology 27 (1988),513–518. J.L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93–114. G.R. Cavalcanti, The Lefschetz property, formality and blowing up in symplectic geometry, Preprint math.SG/0403067. S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Diff. Geom. 44 (1996),666–705. M. Fern´andez, M. Gotay, A. Gray: Compact parallelizable four dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209–1212. M. Fern´andez, M. de Leon and M. Saralegui, A six dimensional compact symplectic solvmanifold without Kahler structures, Osaka J. Math. 33 (1996), 19–35. M. Fernandez, V. Muñoz, J. Santisteban, Cohomologically K¨ahler manifolds with no Kahler metric,Internat. J. Math. Math. Sc. 52 (2003), 3315–3325. M. Fernandez, V. Muñoz, Formality of Donaldson submanifolds, Math. Zeit. (2005), to appear. R. Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995), 527–597. M. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes Congres Intern. Math. (Nice 1970), Gauthier–Villars, Paris, No. 2, 221–225, 1971. M. Gromov, Partial differential relations, Springer–Verlag, Berlin, 1986. A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo 8 (1960), 298–331. R. Ibañez, Y. Rudyak, A. Tralle, L. Ugarte, On symplectically harmonic forms on 6–dimensional nilmanifolds, Comment. Math. Helv. 76 (2001), 89–109. K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964),751–798. J.L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Elie Cartan et les Math. d´Aujour d´Hui, Asterisque hors-serie (1985), 251–271. P. Libermann and C. Marle, Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht,1987. A. Lichnerowicz, Les vari´et´es de Poisson et les algebres de Lie associees, J. Diff. Geom. 12 (1977),253–300. A.I. Mal’cev, A class of homogeneous spaces, Izvestia Akademii Nauk S.S.S.R. Seriya Matematiceskaya 13 (1949), 9–32. English translation: Amer. Math. Soc. Transl. n. 39,1951. O.Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment. Math. Helv. 70 (1995),1–9. D. McDuff, Examples of symplectic simply connected manifolds with no Kahler structure, J. Diff.Geom. 20 (1984), 267–277. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538. W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976),467–468. D. Tischler, Closed 2–forms and an embedding theorem for symplectic manifolds, J. Diff. Geom. 12 (1977), 229–235. T. Yamada, Harmonic cohomology groups of compact symplectic nilmanifolds, Osaka J. Math. 39 (2002), 363–381.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
VMuñoz41.pdf
Size:
336.13 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
VMuñoz41libre.pdf
Size:
235.22 KB
Format:
Adobe Portable Document Format

Collections