Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Quasi-exact solvability in a general polynomial setting

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Citations
Google Scholar

Citation

Abstract

Our goal in this paper is to extend the theory of quasi-exactly solvable Schrodinger operators beyond the Lie-algebraic class. Let P-n be the space of nth degree polynomials in one variable. We first analyze exceptional polynomial subspaces M subset of P-n, which are those proper subspaces of Pn invariant under second-order differential operators which do not preserve Pn. We characterize the only possible exceptional subspaces of codimension one and we describe the space of second-order differential operators that leave these subspaces invariant. We then use equivalence under changes of variable and gauge transformations to achieve a complete classification of these new, non-Lie algebraic Schrodinger operators. As an example, we discuss a finite gap elliptic potential which does not belong to the Treibich-Verdier class.

Research Projects

Organizational Units

Journal Issue

Description

© IOP Publishing. The research of DGU is supported in part by the Ramón y Cajal program of the Ministerio de Ciencia y Tecnología and by the DGI under grants FIS2005-00752 and MTM2006-00478. The research of NK and RM is supported in part by the NSERC grants RGPIN 105490-2004 and RGPIN-228057-2004, respectively

Unesco subjects

Keywords

Collections