Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Quasi-exact solvability in a general polynomial setting

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorKamran, Niky
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-20T10:55:08Z
dc.date.available2023-06-20T10:55:08Z
dc.date.issued2007-10
dc.description© IOP Publishing. The research of DGU is supported in part by the Ramón y Cajal program of the Ministerio de Ciencia y Tecnología and by the DGI under grants FIS2005-00752 and MTM2006-00478. The research of NK and RM is supported in part by the NSERC grants RGPIN 105490-2004 and RGPIN-228057-2004, respectively
dc.description.abstractOur goal in this paper is to extend the theory of quasi-exactly solvable Schrodinger operators beyond the Lie-algebraic class. Let P-n be the space of nth degree polynomials in one variable. We first analyze exceptional polynomial subspaces M subset of P-n, which are those proper subspaces of Pn invariant under second-order differential operators which do not preserve Pn. We characterize the only possible exceptional subspaces of codimension one and we describe the space of second-order differential operators that leave these subspaces invariant. We then use equivalence under changes of variable and gauge transformations to achieve a complete classification of these new, non-Lie algebraic Schrodinger operators. As an example, we discuss a finite gap elliptic potential which does not belong to the Treibich-Verdier class.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipRamón y Cajal program of the Ministerio de Ciencia y Tecnología
dc.description.sponsorshipDGI
dc.description.sponsorshipNSERC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30841
dc.identifier.doi10.1088/0266-5611/23/5/008
dc.identifier.issn0266-5611
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0266-5611/23/5/008
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/nlin/0610065
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51449
dc.issue.number5
dc.journal.titleInverse problems
dc.language.isoeng
dc.page.final1942
dc.page.initial1915
dc.publisherIOP Publishing
dc.relation.projectIDFIS2005-00752
dc.relation.projectIDMTM2006-00478
dc.relation.projectIDRGPIN 105490-2004
dc.relation.projectIDRGPIN-228057-2004
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordSolvable schrodinger-operators
dc.subject.keywordTangential covers
dc.subject.keywordCalogero
dc.subject.keywordPotentials
dc.subject.keywordMonomials
dc.subject.keywordEquations
dc.subject.keywordAlgebras
dc.subject.keywordSpaces
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuasi-exact solvability in a general polynomial setting
dc.typejournal article
dc.volume.number23
dcterms.references[1] Y. Brihaye and B. Hartmann. Quasi-exactly solvable (QES) equations with multiple algebraisations. Czechoslovak J. Phys., 53(11):993–998, 2003. Quantum groups and integrable systems. [2] L. Brink, A. Turbiner, and N. Wyllard. Hidden algebras of the (super) Calogero and Sutherland models. J. Math. Phys., 39(3):1285–1315, 1998. [3] F. Finkel, D. Gómez-Ullate, A. González-López, M. A. Rodríguez, and R. Zhdanov. AN –type Dunkl operators and new spin Calogero-Sutherland models. Comm. Math. Phys., 221(3):477– 497, 2001. [4] F. Finkel, A. González-López, and M. A. Rodríguez. A new algebraization of the Lamé equation. J. Phys. A, 33(8):1519–1542, 2000. [5] F. Gesztesy and R. Weikard. Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies—an analytic approach. Bull. Amer. Math. Soc. (N.S.), 35(4):271–317, 1998. [6] D. Gómez-Ullate, N. Kamran, and R. Milson. Quasi-exact solvability beyond the sl(2 ) algebraization. arXiv:nlin.SI/0601053. [7] D. Gómez-Ullate, N. Kamran, and R. Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. arXiv:nlin.SI/0604070. [8] D. Gómez-Ullate, N. Kamran, and R. Milson. The Darboux transformation and algebraic deformations of shape-invariant potentials. J. Phys. A, 37(5):1789–1804, 2004. [9] D. Gómez-Ullate, N. Kamran, and R. Milson. Quasi-exact solvability and the direct approach to invariant subspaces. J. Phys. A, 38(9):2005–2019, 2005. [10] A. González-López, N. Kamran, and P. J. Olver. Normalizability of one-dimensional quasiexactly solvable Schrödinger operators. Comm. Math. Phys., 153(1):117–146, 1993. [11] A. González-López and T. Tanaka. A new family of N-fold supersymmetry: type B. Phys. Lett. B, 586(1-2):117–124, 2004. [12] A. González-López and T. Tanaka. A novel multi-parameter family of quantum systems with partially broken N-fold supersymmetry. J. Phys. A, 38(23):5133–5157, 2005. [13] A. Khare and U. Sukhatme. Complex periodic potentials with a finite number of band gaps. J. Math. Phys., 47(6):062103, 22, 2006. [14] R. Milson. On the construction of quasi-exactly solvable Schrödinger operators on homogeneous spaces. J. Math. Phys., 36(10):6004–6027, 1995. [15] P. J. Olver. Equivalence, invariants, and symmetry. Cambridge University Press, Cambridge, 1995. [16] G. Post and A. Turbiner. Classification of linear differential operators with an invariant subspace of monomials. Russian J. Math. Phys., 3(1):113–122, 1995. [17] A. O. Smirnov. Finite-gap solutions of the Fuchsian equations. Lett. Math. Phys., 76(2- 3):297–316, 2006. [18] K. Takemura. The Heun equation and the Calogero-Moser-Sutherland system. III. The finitegap property and the monodromy. J. Nonlinear Math. Phys., 11(1):21–46, 2004. [19] A. Treibich and J.-L. Verdier. Revêtements tangentiels et sommes de 4 nombres triangulaires. C. R. Acad. Sci. Paris S´er. I Math., 311(1):51–54, 1990. [20] A. Treibich and J.-L. Verdier. Au-delà des potentiels et revêtements tangentiels hyperelliptiques exceptionnels. C. R. Acad. Sci. Paris Sér. I Math., 325(10):1101–1106, 1997. [21] A. V. Turbiner. Quasi-exactly-solvable problems and sl(2) algebra. Comm. Math. Phys., 118(3):467–474, 1988. [22] A. G. Ushveridze. Quasi-exactly solvable models in quantum mechanics. Institute of Physics Publishing, Bristol, 1994.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate17preprint.pdf
Size:
392.16 KB
Format:
Adobe Portable Document Format

Collections