Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A new convergent algorithm to approximate potentials from fixed angle scattering data

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

J.A. Barceló, C. Castro, T. Luque, and M.C. Vilela, “A New Convergent Algorithm to Approximate Potentials from Fixed Angle Scattering Data,” SIAM J. Appl. Math. 78(5), 2714–2736 (2018).

Abstract

We introduce a new iterative method to recover a real compact supported potential of the Schödinger operator from their fixed angle scattering data. The method combines a fixed point argument with a suitable approximation of the resolvent of the Schödinger operator by partial sums associated to its Born series. The main interest is that, unlike other iterative methods in the literature, each iteration is explicit (and therefore faster computationally) and a rigorous analytical result on the convergence of the iterations is proved. This result requires potentials with small norm in certain Sobolev spaces. As an application we show some numerical experiments that illustrate this convergence.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections