A new convergent algorithm to approximate potentials from fixed angle scattering data
dc.contributor.author | Barceló, Juan Antonio | |
dc.contributor.author | Castro, Carlos | |
dc.contributor.author | Luque Martínez, Teresa Elvira | |
dc.contributor.author | Vilela, María de la Cruz | |
dc.date.accessioned | 2024-02-07T08:57:23Z | |
dc.date.available | 2024-02-07T08:57:23Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We introduce a new iterative method to recover a real compact supported potential of the Schödinger operator from their fixed angle scattering data. The method combines a fixed point argument with a suitable approximation of the resolvent of the Schödinger operator by partial sums associated to its Born series. The main interest is that, unlike other iterative methods in the literature, each iteration is explicit (and therefore faster computationally) and a rigorous analytical result on the convergence of the iterations is proved. This result requires potentials with small norm in certain Sobolev spaces. As an application we show some numerical experiments that illustrate this convergence. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | J.A. Barceló, C. Castro, T. Luque, and M.C. Vilela, “A New Convergent Algorithm to Approximate Potentials from Fixed Angle Scattering Data,” SIAM J. Appl. Math. 78(5), 2714–2736 (2018). | |
dc.identifier.doi | 10.1137/18m1172247 | |
dc.identifier.essn | 1095-712X | |
dc.identifier.issn | 0036-1399 | |
dc.identifier.officialurl | https://doi.org/10.1137/18m1172247 | |
dc.identifier.relatedurl | https://www.siam.org/publications/journals/siam-journal-on-applied-mathematics-siap | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/99770 | |
dc.issue.number | 5 | |
dc.journal.title | SIAM Journal on Applied Mathematics | |
dc.language.iso | eng | |
dc.page.final | 2736 | |
dc.page.initial | 2714 | |
dc.rights.accessRights | restricted access | |
dc.subject.keyword | Inverse problem | |
dc.subject.keyword | Helmholtz equation | |
dc.subject.keyword | Scattering | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1206.13 Ecuaciones Diferenciales en Derivadas Parciales | |
dc.title | A new convergent algorithm to approximate potentials from fixed angle scattering data | en |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 78 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2c50f5ea-88b0-4329-bb0d-75d54cd1efdc | |
relation.isAuthorOfPublication.latestForDiscovery | 2c50f5ea-88b0-4329-bb0d-75d54cd1efdc |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_new_convergent_algorithm.pdf
- Size:
- 464.98 KB
- Format:
- Adobe Portable Document Format