T cells with dysfunctional mitochondria induce multimorbidity and premature senescence
Loading...
Official URL
Full text at PDC
Publication date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Science
Citation
Gabriela Desdín-Micó et al. ,T cells with dysfunctional mitochondria induce multimorbidity and premature senescence.Science368,1371-1376(2020).DOI:10.1126/science.aax0860
Abstract
The effect of immunometabolism on age-associated diseases remains uncertain. In this work, we show that T cells with dysfunctional mitochondria owing to mitochondrial transcription factor A (TFAM) deficiency act as accelerators of senescence. In mice, these cells instigate multiple aging-related features, including metabolic, cognitive, physical, and cardiovascular alterations, which together result in premature death. T cell metabolic failure induces the accumulation of circulating cytokines, which resembles the chronic inflammation that is characteristic of aging (“inflammaging”). This cytokine storm itself acts as a systemic inducer of senescence. Blocking tumor necrosis factor–α signaling or preventing senescence with nicotinamide adenine dinucleotide precursors partially rescues premature aging in mice with Tfam-deficient T cells. Thus, T cells can regulate organismal fitness and life span, which highlights the importance of tight immunometabolic control in both aging and the onset of age-associated diseases.
Description
This study was supported by the Fondo de Investigación Sanitaria del Instituto de Salud Carlos III (PI16/02188 and PI19/00855; and PI16/02110 to B.I.), the European Regional Development Fund (ERDF), and the European Commission through H2020-EU.1.1 and European Research Council grant ERC-2016-StG 715322-EndoMitTalk. This work was partially supported by Comunidad de Madrid (S2017/BMD-3867 RENIM-CM). M.M. is supported by the Miguel Servet Program (CPII 19/00014). G.S.-H. is supported by FPI-UAM, J.O. (FJCI-2017-33855) and E.G.-R. (IJC2018-036850) by Juan de la Cierva, and E.C. by Atracción de Talento Investigador 2017-T2/BMD-5766 (Comunidad de Madrid and UAM). B.I. was supported by ERC research grant ERC-2018-CoG 819775-MATRIX.