Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Degradation of instrumentation amplifiers due to the nonionizing energy loss damage

dc.contributor.authorFranco Peláez, Francisco Javier
dc.contributor.authorLozano Rogado, Jesús
dc.contributor.authorSantos Blanco, José Pedro
dc.contributor.authorAgapito Serrano, Juan Andrés
dc.date.accessioned2023-06-20T10:50:46Z
dc.date.available2023-06-20T10:50:46Z
dc.date.issued2003-12
dc.description© IEEE TNS
dc.description.abstractTests on instrumentation amplifiers exposed to neutron radiation have been done. The tested devices were commercial instrumentation amplifiers or designed with rad-tol commercial operational amplifiers. The results show changes in frequency behavior, gain, offset voltage, output saturation voltages, and quiescent current. The radiation tolerance is bigger in amplifiers with JFET input stage or with large frequency bandwidth and is smaller if the amplifier has been designed for reducing the power consumption. The IAs built with OPAMPs have a higher tolerance than the commercial ones, but they have disadvantages: high temperature influence, low CMRR, etc.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia
dc.description.sponsorshipCERN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29101
dc.identifier.doi10.1109/TNS.2003.820628
dc.identifier.issn0018-9499
dc.identifier.officialurlhttp://dx.doi.org/10.1109/TNS.2003.820628
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51327
dc.issue.number6
dc.journal.titleIEEE Transactions on Nuclear Science
dc.language.isoeng
dc.page.final2440
dc.page.initial2433
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.projectIDTIC98-0737
dc.relation.projectIDK476/LHC
dc.rights.accessRightsopen access
dc.subject.cdu537.8
dc.subject.keywordAmplification
dc.subject.keywordInstrumentation amplifiers
dc.subject.keywordJunction gate field effect transistors
dc.subject.keywordNeutron effects
dc.subject.keywordNuclear electronics
dc.subject.keywordnuclear instrumentation
dc.subject.keywordoperational amplifiers
dc.subject.keywordCOTS
dc.subject.keywordJFET input stage
dc.subject.keyworddisplacement damage
dc.subject.keywordfrequency behavior
dc.subject.keywordgain
dc.subject.keywordhigh temperature influence
dc.subject.keywordinstrumentation amplifiers degradation
dc.subject.keywordlarge frequency bandwidth
dc.subject.keywordlow CMRR
dc.subject.keywordneutron radiation
dc.subject.keywordneutron tolerance
dc.subject.keywordnonionizing energy loss damage tests
dc.subject.keywordoffset voltage
dc.subject.keywordoutput saturation voltages
dc.subject.keywordpower consumption
dc.subject.keywordquiescent current
dc.subject.keywordrad-tol commercial operational amplifiers
dc.subject.keywordradiation tolerance
dc.subject.keywordBandwidth
dc.subject.keywordDegradation
dc.subject.keywordEnergy loss
dc.subject.keywordFrequency
dc.subject.keywordInstruments
dc.subject.keywordNeutrons
dc.subject.keywordOperational amplifiers
dc.subject.keywordPower amplifiers
dc.subject.keywordTesting
dc.subject.keywordVoltage
dc.subject.ucmElectrónica (Física)
dc.subject.ucmRadiactividad
dc.titleDegradation of instrumentation amplifiers due to the nonionizing energy loss damage
dc.typejournal article
dc.volume.number50
dcterms.references[1] The LHC Study Group, “The Large Hadron Collider Conceptual Design,” Tech. Rep., 1995. [2] J. R. Riskin, “A User’s Guide to IC Instrumentation Amplifier ,” [On-line] Available: Appl. Notes Analog Devices AN-244; Analog Devices website. [3] C. Kitchin and L. Counts, “A Designer’s Guide to Instrumentation Amplifiers,” [Online] Available: Appl. Guide Analog Devices; Analog Devices website, Tech. Rep., 2000. [4] P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. Cambridge Univ. Press, 1990. [5] “Op Amp Circuit Collection,” [Online] Available: Appl. Note National Semiconductor AN-31; National Semiconductor website, Oct. 2000. [6] J. A. Agapito et al., “Instrumentation amplifiers and voltage controlled current sources for LHC cryogenic system,” in 6th Workshop LHC Experiments (LEB’00), Sep. 2000, pp. 275–280. [7] J. A. Agapito et al., “Preliminary test for radiation tolerant electronic components for the LHC cryogenic system,” in 5th Workshop LHC Experiments (LEB’99), Sep. 1999, pp. 475–479. [8] G. Messenger and M. Ash, The Effects of Radiation on Electronic Systems, 2nd ed. Van Nostrand Reinhold, 1992. [9] L. Adams, “Guidelines for the Use of Electronic Components in the Space Radiation Environment,” Tech. Rep., 2000. [10] F. Faccio, “COTS for LHC radiation environment: The rules of the game,” in 6th Workshop LHC Experiments (LEB’00), Sep. 2000, pp. 50–63. [11] H. J. Barnaby et al., “Identification of degradation mechanisms in a bipolar linear voltage comparator trough correlation of transistor and circuit response,” IEEE Trans. Nucl. Sci., vol. 47, pp. 1666–1673, Dec. 1999. [12]H. J. Barnaby et al., “Origins of total dose response variability in linear bipolar microcircuits,” IEEE Trans. Nucl. Sci., vol. 46, pp. 2342–2349, Dec. 1999. [13] F. Saigné et al., “Experimental procedure to predict the competition between the degradation induced by irradiation and thermal annealing of oxide trapped charge in MOSFETs,” IEEE Trans. Nucl. Sci., vol. 47, pp. 2329–2333, Dec. 2000. [14] D. Christiansen, Electronics Engineers’ Handbook, 4th ed. McGraw-Hill, 1997. [15] E. Greeneich, Analog Integrated Circuits, London, U.K.: Chapman Hall, 1997. [16] R. Palmer, “DC parameters: Input offset voltage (VIO),” [Online] Available: Appl. Note Texas Instruments; Texas Instruments website, Mar. 2001. [17] B. Ngouyen and W. D. Smith, “Nulling input offset voltage of operational amplifiers,” [Online] Available: Appl. Note Texas Instruments; Texas Instruments website, Aug. 2000. [18] D. Neamen, Semiconductor Physics and Devices: Basic Principles, 2nd ed. McGraw-Hill, 1992. [19] B. G. Rax, A. H. Johnston, and T. Miyahira, “Displacement damage in bipolar linear integrated circuits,” IEEE Trans. Nucl. Sci., vol. 46, pp. 1660 1665, Dec. 1999. [20] H. J. Barnaby, R. D. Schrimpf, R. D. Sternberg, V. Berthe, C. R. Cirba, and R. L. Pease, “Proton radiation response mechanisms in bipolar analog circuits,” IEEE Trans. Nucl. Sci., vol. 48, pp. 2074–2080, Dec. 2001. [21] [Online]. Available: http://erric.dasiac.com. [22] “Jet Propulsion Laboratory Radata Interactive ,” [Online]. Available: http://radnet.jpl.nasa.gov. [23] W. K. Chien, The VLSI Handbook. CRC Press, 2000. [24] E. Nash, “Errors and error budget analysis in instrumentation amplifiers applications,” [Online] Available: Appl. Note from Analog Devices; Analog Devices website.
dspace.entity.typePublication
relation.isAuthorOfPublication662ba05f-c2fc-4ad7-9203-36924c80791a
relation.isAuthorOfPublication.latestForDiscovery662ba05f-c2fc-4ad7-9203-36924c80791a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TNS2003-Franco-UCM.pdf
Size:
452.9 KB
Format:
Adobe Portable Document Format

Collections