Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P

Loading...
Thumbnail Image

Full text at PDC

Publication date

1986

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

G. Ellingsrud and S. A. Strømme [Invent. Math. 87 (1987), no. 2, 343–352; see the following review] have proved that the Chow group of the Hilbert scheme Hilb d P 2 is free and have computed the ranks of its homogeneous parts A i (Hilb d P 2 ) . In the present note, the author introduces a family of cycles in Hilb d P 2 and conjectures this family to be a basis of the Chow group. In the case d=3 , this follows from a paper by G. Elencwajg and P. Le Barz [C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 12, 635–638; MR0814963 (87c:14006)]. Here the conjecture is proved in case d=4 , and for any d , in the cases i=2,3,2d−3, 2d−2 . The proof consists in calculations of intersection matrices.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections