Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P

dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.date.accessioned2023-06-21T02:02:27Z
dc.date.available2023-06-21T02:02:27Z
dc.date.issued1986-10-30
dc.description.abstractG. Ellingsrud and S. A. Strømme [Invent. Math. 87 (1987), no. 2, 343–352; see the following review] have proved that the Chow group of the Hilbert scheme Hilb d P 2 is free and have computed the ranks of its homogeneous parts A i (Hilb d P 2 ) . In the present note, the author introduces a family of cycles in Hilb d P 2 and conjectures this family to be a basis of the Chow group. In the case d=3 , this follows from a paper by G. Elencwajg and P. Le Barz [C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 12, 635–638; MR0814963 (87c:14006)]. Here the conjecture is proved in case d=4 , and for any d , in the cases i=2,3,2d−3, 2d−2 . The proof consists in calculations of intersection matrices.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16643
dc.identifier.issn0764-4442
dc.identifier.officialurlhttp://gallica.bnf.fr/ark:/12148/bpt6k5744587p/f71.image.r=COMPTES%20RENDUS%20DE%20L%20ACADEMIE%20DES%20SCIENCES%20SERIE%20I-MATHEMATIQUE.langES
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64679
dc.issue.number13
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.language.isofra
dc.page.final650
dc.page.initial647
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu512.1
dc.subject.keywordChow groups and rings
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P
dc.typejournal article
dc.volume.number303
dcterms.referencesG. ELENCWAJG et P. LE BARZ, Une base de Pic (Hilb1/2 P2), Comptes rendus, 297, série I, 1983, p. 175-178. G. ELENCWAJG et P. LE BARZ, Détermination de l'anneau de Chow de Hilb 3 P2, Comptes rendus, 301,série I, 1985, p. 635-638. [3] G. ELLINSGRUD et S. A. STRÇMME, On the homology ofthe Hilbert scheme of points in the plane, Preprint Séries, n° 13, Universitet i Oslo, 1984. P. LE BARZ, Validité de certaines formules de géométrie énumérative, Comptes rendus, 289, série A, 1979,p. 755-758. R. MALLAVIBARRENA, Validité de la formule classique des trisécants stationnaires (à paraître).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
malla08.pdf
Size:
351.14 KB
Format:
Adobe Portable Document Format

Collections