The Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P
dc.contributor.author | Mallavibarrena Martínez de Castro, Raquel | |
dc.date.accessioned | 2023-06-21T02:02:27Z | |
dc.date.available | 2023-06-21T02:02:27Z | |
dc.date.issued | 1986-10-30 | |
dc.description.abstract | G. Ellingsrud and S. A. Strømme [Invent. Math. 87 (1987), no. 2, 343–352; see the following review] have proved that the Chow group of the Hilbert scheme Hilb d P 2 is free and have computed the ranks of its homogeneous parts A i (Hilb d P 2 ) . In the present note, the author introduces a family of cycles in Hilb d P 2 and conjectures this family to be a basis of the Chow group. In the case d=3 , this follows from a paper by G. Elencwajg and P. Le Barz [C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 12, 635–638; MR0814963 (87c:14006)]. Here the conjecture is proved in case d=4 , and for any d , in the cases i=2,3,2d−3, 2d−2 . The proof consists in calculations of intersection matrices. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16643 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.officialurl | http://gallica.bnf.fr/ark:/12148/bpt6k5744587p/f71.image.r=COMPTES%20RENDUS%20DE%20L%20ACADEMIE%20DES%20SCIENCES%20SERIE%20I-MATHEMATIQUE.langES | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64679 | |
dc.issue.number | 13 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.language.iso | fra | |
dc.page.final | 650 | |
dc.page.initial | 647 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.1 | |
dc.subject.keyword | Chow groups and rings | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | The Chow groups of Hilb 4 P 2 and a base for A 2 ,A 3 ,A 2d−2 ,A 2d−3 of Hilb d P | |
dc.type | journal article | |
dc.volume.number | 303 | |
dcterms.references | G. ELENCWAJG et P. LE BARZ, Une base de Pic (Hilb1/2 P2), Comptes rendus, 297, série I, 1983, p. 175-178. G. ELENCWAJG et P. LE BARZ, Détermination de l'anneau de Chow de Hilb 3 P2, Comptes rendus, 301,série I, 1985, p. 635-638. [3] G. ELLINSGRUD et S. A. STRÇMME, On the homology ofthe Hilbert scheme of points in the plane, Preprint Séries, n° 13, Universitet i Oslo, 1984. P. LE BARZ, Validité de certaines formules de géométrie énumérative, Comptes rendus, 289, série A, 1979,p. 755-758. R. MALLAVIBARRENA, Validité de la formule classique des trisécants stationnaires (à paraître). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1