Single Photon Counting with Silicon Photomultipliers, shortening systems and incoherent illumination

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
European Optical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this work it is shown the benefit of using pulse shortening systems for conforming photodetection pulses provided by Silicon Photomultipliers (SiPMs). One of the main drawbacks when using SiPMs is the slow falling edge in the detection signal which can reach even hundreds of nanoseconds. Pulses obtained when using the shortening systems proposed here are single narrow peaks, with full width at half maximum (FWHM) around 10 ns, preserving the photonic modulation and with good pseudo-gaussian shape, single polarity and low ringing. Different tests are presented to illustrate the advantage of these systems in the detection of single photons emitted in short, incoherent pulses.
This work has been funded by Spanish MICINN Project FPA2010-22056-C06-04.
Unesco subjects
[1] D. Renker, Geiger-mode avalanche photodiodes, history, properties and problems, Nucl. Instrum. Meth. A, 567, 48–56 (2006). [2] V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Meth. A, 538, 408–415 (2005). [3] D. Renker, and E. Lorenz, “Advances in solid state photon detectors,” J. Instrum., 4, 04004 (2009). [4] J. Haba, “Status and perspectives of Pixelated Photon Detector (PPD)”, Nucl. Instrum. Meth. A, 595, 154–160 (2008). [5] D. Renker, “New trends on photodetectors,” Nucl. Instrum. Meth. A, 571, 1–6 (2007). [6] A. Stewart, E. Greene-O’Sullivan, D. Herbert, V. Saveliev, F. Quinlan, L. Wall,et al, “Study of the properties of new SPM detectors,” Proc. SPIE, 6119, 61190A (2006). [7] J. P. Knemeyer, N. Marmé and J. D. Hoheisel,“Spectrally resolved fluorescence lifetime imaging microscopy (SFLIM)–an appropriate method for imaging single molecules in living cells,” Anal. Bioanal. Chem., 387, 37–40 (2007). [8] E. R. Tkaczyk, C. F. Zhong, J. Y. Ye, A. Myc, T. Thomas, Z. Cao, et al, “In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry,” Opt. Commun., 281, 888–894 (2008). [9] D. J. Herbert, S. Moehrs, N. D’Ascenzo, N. Belcari, A. Del Guerra, F. Morsani, and V. Saveliev, “The Silicon Photomultiplier for application to high-resolution Positron Emission Tomography,” Nucl. Instrum. Meth. A, 573, 84–87 (2007). [10] A. Braem, E. Chesi, C. Joram, A. Rudge, J. Seguinot, P. Weilhammer, et al, “Wave length shifter strips and G-APD arrays for the read-out of the z-coordinate in axial PET modules,” Nucl. Instrum. Meth. A, 586, 300–308 (2008). [11] B. J. Pichler, H. F. Wehrl, A. Kolb, and M. S. Judenhofer, “Positron Emission Tomography / Magnetic Resonance Imaging: The Next Generation of Multimodality Imaging?,” Semin. Nucl. Med., 38, 199–208 (2008). [12] P. J. Clarke, R. J. Collins, P. A. Hiskett, M. J. García-Martínez, N. J. Krichel, A. McCarthy, et al, “Analysis of detector performance in a gigahertz clock rate quantum key distribution system,” New. J. Phys., 13, 075008 (2011). [13] M. Teshima, B. Dolgoshein, R. Mirzoyan, J. Nincovic, and E. Popova, “SiPM development for Astroparticle Physics Applications,” Proc 30th Int. Cosmic Ray Conf., 5, 985–988 (2007). [14] R. Mirzoyan, B. Dolgoshein, P. Holl, S. Klemin, C. Merck, H. Moser, et al, “SiPM and ADD as advanced detectors for astro-particle physics,” Nucl. Instrum. Meth. A, 572, 493–494 (2007). [15] N. Otte, “The Silicon Photomultiplier–A new device for High Energy Physics, Astroparticle Physics, Industrial and Medical Applications,” in Proceedings to SNIC symposium (SLAC, Stanford, 2006). [16] N. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “The Potential of SiPM as Photon Detector in Astroparticle Physics Experiments like MAGIC and EUSO,” Nucl. Phys. B, 150, 144–149 (2006). [17] F. Risigo, A. Bulgheroni, M. Caccia, C. Cappellini, V. Chmill, N. Fedyushkina, et al, “SiPM technology applied to radiation sensor development,” Nucl. Instrum. Meth. A, 607, 75–77 (2009). [18] S. Vinogradov, T. Vinogradova, V. Shubin, D. Shushakov, and K. Sitarsky, “Efficiency of Solid State Photomultipliers in Photon Number Resolution,” IEEE T. Nucl. Sci., 58, 9–16 (2011). [19] M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B, 27, 852–862 (2010). [20] Z. Sadygov, A. Olshevski, I. Chirikov, I. Zheleznykh, and A. Novikov, “Three advanced designs of micro-pixel avalanche photodiodes: Their present status, maximum possibilities and limitations,” Nucl. Instrum. Meth. A, 567, 70–73 (2006). [21] kapd1023e05.pdf [22] Characteristics_and_use_of_SI_APD.pdf [23] [24] [25] [26] fileadmin/user_upload/home/Datasheets/divers-vis/ari/655nm/adl-65074tr.pdf [27] [28] P. Antoranz, I. Vegas, and J. M. Miranda, “A 4 V, ns-range pulse generator for the test of Cherenkov Telescopes readout electronics,” Nucl. Instrum. Meth. A, 620, 456–461 (2010). [29] P. Antoranz, Contributions to the high frequency electronics of MAGIC II Gamma Ray Telescope (PhD thesis, Universidad Complutense de Madrid, 2009). [30] [31] [32] [33] [34] [35] misc/photo_multiplier/hamamatsu_specs/02_R10408%20for%20MAG C%20DATA%2020060824.pdf