Classification of blow-up with nonlinear diffusion and localized reaction
dc.contributor.author | Ferreira de Pablo, Raúl | |
dc.contributor.author | Pablo, Arturo de | |
dc.contributor.author | Vázquez, Juan Luis | |
dc.date.accessioned | 2023-06-20T09:28:16Z | |
dc.date.available | 2023-06-20T09:28:16Z | |
dc.date.issued | 2006-12-01 | |
dc.description.abstract | We study the behaviour of nonnegative solutions of the reaction-diffusion equation _ ut = (um)xx + a(x)up in R × (0, T), u(x, 0) = u0(x) in R. The model contains a porous medium diffusion term with exponent m > 1, and a localized reaction a(x)up where p > 0 and a(x) ≥ 0 is a compactly supported function. We investigate the existence and behaviour of the solutions of this problem in dependence of the exponents m and p. We prove that the critical exponent for global existence is p0 = (m + 1)/2, while the Fujita exponent is pc = m + 1: if 0 < p ≤ p0 every solution is global in time, if p0 < p ≤ pc all solutions blow up and if p > pc both global in time solutions and blowing up solutions exist. In the case of blow-up, we find the blow-up rates, the blow-up sets and the blow-up profiles; we also show that reaction happens as in the case of reaction extended to the whole line if p > m, while it concentrates to a point in the form of a nonlinear flux if p < m. If p = m the asymptotic behaviour is given by a self-similar solution of the original problem. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/12493 | |
dc.identifier.doi | 10.1016/j.jde.2006.04.017 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/00220396 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49642 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Differential Equations | |
dc.language.iso | eng | |
dc.page.final | 211 | |
dc.page.initial | 195 | |
dc.publisher | Elsevier | |
dc.relation.projectID | BFM2002-04572 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Blow-up | |
dc.subject.keyword | Porous medium equation | |
dc.subject.keyword | Asymptotic behaviour | |
dc.subject.keyword | Localized reaction | |
dc.subject.keyword | Nonlinear boundary conditions | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Classification of blow-up with nonlinear diffusion and localized reaction | |
dc.type | journal article | |
dc.volume.number | 231 | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2006classification-13.pdf
- Size:
- 209.25 KB
- Format:
- Adobe Portable Document Format