Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Summability with the speed of orthogonal series by the Euler-Knopp and Cesàro methods

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1972

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

University of Tartu
Citations
Google Scholar

Citation

Abstract

The series ∑Uk is said to be summable (Eλ,q) to u, if λn(En q−u)=o(1), where En q denotes the Euler-Knopp transform of the sequence of partial sums of the series, and λ={λn} is a positive increasing sequence. It is shown that all the methods (Eλ,q), q>0, are equivalent in the case of the orthogonal series ∑ckφk(x), φn∈Lμ 2[a,b], almost everywhere in the interval [a,b] if ∑λk 2Ck 2<∞ and λ belongs to the class ΛE, which is defined as ΛE={λ:λn(k+1)/(n+1)λk=O(1);k,n=0,1,⋯,k≤n}. A similar result for Cesàro summability (Cλ,α) is proved by replacing the En q-means by Cesàro means σn α and the class ΛE by the class Λc={λ:λn(k+1)τ/(n+1)τλk=O(1); k,n=0,1,⋯,k≤n,τ∈(0,1/2)}.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections