Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Summability with the speed of orthogonal series by the Euler-Knopp and Cesàro methods

dc.contributor.authorMartín Peinador, Elena
dc.date.accessioned2023-06-21T02:06:34Z
dc.date.available2023-06-21T02:06:34Z
dc.date.issued1972
dc.description.abstractThe series ∑Uk is said to be summable (Eλ,q) to u, if λn(En q−u)=o(1), where En q denotes the Euler-Knopp transform of the sequence of partial sums of the series, and λ={λn} is a positive increasing sequence. It is shown that all the methods (Eλ,q), q>0, are equivalent in the case of the orthogonal series ∑ckφk(x), φn∈Lμ 2[a,b], almost everywhere in the interval [a,b] if ∑λk 2Ck 2<∞ and λ belongs to the class ΛE, which is defined as ΛE={λ:λn(k+1)/(n+1)λk=O(1);k,n=0,1,⋯,k≤n}. A similar result for Cesàro summability (Cλ,α) is proved by replacing the En q-means by Cesàro means σn α and the class ΛE by the class Λc={λ:λn(k+1)τ/(n+1)τλk=O(1); k,n=0,1,⋯,k≤n,τ∈(0,1/2)}.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22408
dc.identifier.relatedurlhttp://dspace.utlib.ee/dspace/handle/10062/16889
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64871
dc.journal.titleTartu Riikliku Ülikooli Toimetised. Uchenye Zapiski Tartuskogo Gosudarstvennogo Universiteta. Acta et Commentationes Universitatis Tartuensis
dc.page.final237
dc.page.initial222
dc.publisherUniversity of Tartu
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.51/.52
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleSummability with the speed of orthogonal series by the Euler-Knopp and Cesàro methods
dc.typejournal article
dc.volume.number305
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Collections