Summability with the speed of orthogonal series by the Euler-Knopp and Cesàro methods
dc.contributor.author | Martín Peinador, Elena | |
dc.date.accessioned | 2023-06-21T02:06:34Z | |
dc.date.available | 2023-06-21T02:06:34Z | |
dc.date.issued | 1972 | |
dc.description.abstract | The series ∑Uk is said to be summable (Eλ,q) to u, if λn(En q−u)=o(1), where En q denotes the Euler-Knopp transform of the sequence of partial sums of the series, and λ={λn} is a positive increasing sequence. It is shown that all the methods (Eλ,q), q>0, are equivalent in the case of the orthogonal series ∑ckφk(x), φn∈Lμ 2[a,b], almost everywhere in the interval [a,b] if ∑λk 2Ck 2<∞ and λ belongs to the class ΛE, which is defined as ΛE={λ:λn(k+1)/(n+1)λk=O(1);k,n=0,1,⋯,k≤n}. A similar result for Cesàro summability (Cλ,α) is proved by replacing the En q-means by Cesàro means σn α and the class ΛE by the class Λc={λ:λn(k+1)τ/(n+1)τλk=O(1); k,n=0,1,⋯,k≤n,τ∈(0,1/2)}. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22408 | |
dc.identifier.relatedurl | http://dspace.utlib.ee/dspace/handle/10062/16889 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64871 | |
dc.journal.title | Tartu Riikliku Ülikooli Toimetised. Uchenye Zapiski Tartuskogo Gosudarstvennogo Universiteta. Acta et Commentationes Universitatis Tartuensis | |
dc.page.final | 237 | |
dc.page.initial | 222 | |
dc.publisher | University of Tartu | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.51/.52 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Summability with the speed of orthogonal series by the Euler-Knopp and Cesàro methods | |
dc.type | journal article | |
dc.volume.number | 305 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |