Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A convergent numerical scheme for integrodifferential kinetic models of angiogenesis

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Bonilla, L., Carpio Rodríguez, A. M., Carretero Zamora, J. M. et al. «A Convergent Numerical Scheme for Integrodifferential Kinetic Models of Angiogenesis». Journal of Computational Physics, vol. 375, diciembre de 2018, pp. 1270-94. DOI.org (Crossref), https://doi.org/10.1016/j.jcp.2018.09.008.

Abstract

We study a robust finite difference scheme for integrodifferential kinetic systems of Fokker-Planck type modeling tumor driven blood vessel growth. The scheme is of order one and enjoys positivity features. We analyze stability and convergence properties, and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the solution of the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. A numerical study clarifies the influence of velocity cut-offs on the solutions for exponentially decaying data.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections