Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Scaling law for topologically ordered systems at finite temperature

dc.contributor.authorIblisdir, I.
dc.contributor.authorPérez García, David
dc.contributor.authorAguado, M.
dc.contributor.authorPachos, J.
dc.date.accessioned2023-06-20T00:23:18Z
dc.date.available2023-06-20T00:23:18Z
dc.date.issued2009-04-16
dc.description.abstractUnderstanding the behavior of topologically ordered lattice systems at finite temperature is a way of assessing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological entanglement entropy for T>0, namely, the subleading correction I(topo) to the area law for mutual information. Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretical functions and readily identifiable scaling behavior, from which the interplay between volume, temperature, and topological order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results are given for the D(S(3)) model, showing qualitative agreement with the Abelian case.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipGeneralitat de Catalunya
dc.description.sponsorshipMEC Spain
dc.description.sponsorshipQAP EU
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17749
dc.identifier.doi10.1103/PhysRevB.79.134303
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://link.aps.org/doi/10.1103/PhysRevB.79.134303
dc.identifier.relatedurlhttp://www.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42495
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final1
dc.page.initial134303
dc.publisherAmerican Physical Society
dc.relation.projectID(MTM2005-00082)
dc.relation.projectID(CCG07-UCM/ESP-2797)
dc.relation.projectIDI-MATH
dc.rights.accessRightsopen access
dc.subject.cdu530.1
dc.subject.ucmFísica matemática
dc.titleScaling law for topologically ordered systems at finite temperature
dc.typejournal article
dc.volume.number79
dcterms.referencesX.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990). X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2004). A. Yu. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003). C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008). J. Preskill, Lecture notes on quantum computation (www.theory.caltech.edu/people/preskill/ph229/) These are exactly solvable in the sense that their low-energy sectors can be analytically worked out and are well understood. S. Iblisdir et al. (unpublished). M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006). A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006). A. Hamma et al., Phys. Lett. A 337, 22 (2005). M. M. Wolf et al., Phys. Rev. Lett. 100, 070502 (2008). The use of mutual information to study topological order in classical system has been discussed in Ref. 17. C. Castelnovo and C. Chamon, Phys. Rev. B 76, 184442 (2007); Z. Nussinov and G. Ortiz, arXiv:cond-mat/0702377 (unpublished) The situation could be different in more than two dimensions (Ref. 18). H. Bombín and M. A. Martín-Delgado, Phys. Rev. B 78, 115421 (2008). M. Fannes et al., Commun. Math. Phys. 144, 443 (1992); S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995); D. Pérez-García et al., Quantum Inf. Comput. 7, 401 (2007). C. Castelnovo and C. Chamon, Phys. Rev. B 76, 174416 (2007).E. Dennis et al., J. Math. Phys. 43, 4452 (2002); C. Castelnovo and C. Chamon, Phys. Rev. B 78, 155120 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0806.1853v2.pdf
Size:
115.79 KB
Format:
Adobe Portable Document Format

Collections