Scaling law for topologically ordered systems at finite temperature
dc.contributor.author | Iblisdir, I. | |
dc.contributor.author | Pérez García, David | |
dc.contributor.author | Aguado, M. | |
dc.contributor.author | Pachos, J. | |
dc.date.accessioned | 2023-06-20T00:23:18Z | |
dc.date.available | 2023-06-20T00:23:18Z | |
dc.date.issued | 2009-04-16 | |
dc.description.abstract | Understanding the behavior of topologically ordered lattice systems at finite temperature is a way of assessing their potential as fault-tolerant quantum memories. We compute the natural extension of the topological entanglement entropy for T>0, namely, the subleading correction I(topo) to the area law for mutual information. Its dependence on T can be written, for Abelian Kitaev models, in terms of information-theoretical functions and readily identifiable scaling behavior, from which the interplay between volume, temperature, and topological order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results are given for the D(S(3)) model, showing qualitative agreement with the Abelian case. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministry of Science | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Generalitat de Catalunya | |
dc.description.sponsorship | MEC Spain | |
dc.description.sponsorship | QAP EU | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17749 | |
dc.identifier.doi | 10.1103/PhysRevB.79.134303 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.officialurl | http://link.aps.org/doi/10.1103/PhysRevB.79.134303 | |
dc.identifier.relatedurl | http://www.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42495 | |
dc.journal.title | Physical Review B | |
dc.language.iso | eng | |
dc.page.final | 1 | |
dc.page.initial | 134303 | |
dc.publisher | American Physical Society | |
dc.relation.projectID | (MTM2005-00082) | |
dc.relation.projectID | (CCG07-UCM/ESP-2797) | |
dc.relation.projectID | I-MATH | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 530.1 | |
dc.subject.ucm | Física matemática | |
dc.title | Scaling law for topologically ordered systems at finite temperature | |
dc.type | journal article | |
dc.volume.number | 79 | |
dcterms.references | X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990). X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2004). A. Yu. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003). C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008). J. Preskill, Lecture notes on quantum computation (www.theory.caltech.edu/people/preskill/ph229/) These are exactly solvable in the sense that their low-energy sectors can be analytically worked out and are well understood. S. Iblisdir et al. (unpublished). M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006). A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006). A. Hamma et al., Phys. Lett. A 337, 22 (2005). M. M. Wolf et al., Phys. Rev. Lett. 100, 070502 (2008). The use of mutual information to study topological order in classical system has been discussed in Ref. 17. C. Castelnovo and C. Chamon, Phys. Rev. B 76, 184442 (2007); Z. Nussinov and G. Ortiz, arXiv:cond-mat/0702377 (unpublished) The situation could be different in more than two dimensions (Ref. 18). H. Bombín and M. A. Martín-Delgado, Phys. Rev. B 78, 115421 (2008). M. Fannes et al., Commun. Math. Phys. 144, 443 (1992); S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995); D. Pérez-García et al., Quantum Inf. Comput. 7, 401 (2007). C. Castelnovo and C. Chamon, Phys. Rev. B 76, 174416 (2007).E. Dennis et al., J. Math. Phys. 43, 4452 (2002); C. Castelnovo and C. Chamon, Phys. Rev. B 78, 155120 (2008). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5edb2da8-669b-42d1-867d-8fe3144eb216 | |
relation.isAuthorOfPublication.latestForDiscovery | 5edb2da8-669b-42d1-867d-8fe3144eb216 |
Download
Original bundle
1 - 1 of 1