Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the smoothness of weak solutions to subcritical semilinear elliptic equations in any dimension

Loading...
Thumbnail Image

Official URL

Full text at PDC

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Let us consider a semilinear boundary value problem −∆u =f(x, u), in Ω, with Dirichlet boundary conditions, where Ω ⊂ R N , N > 2, is a bounded smooth domain. We provide sufficient conditions guarantying that semi-stable weak positive solutions to subcritical semilinear elliptic equations are smooth in any dimension, and as a consequence, classical solutions. By a subcritical nonlinearity we mean f(x, s)/s N+2 N−2 → 0 as s → ∞, including non-power nonlinearities, and enlarging the class of subcritical nonlinearities, which is usually reserved for power like nonlinearities.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections