Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Single and multiple error state-space models for signal extraction

dc.contributor.authorCasals Carro, José
dc.contributor.authorSotoca López, Sonia
dc.contributor.authorJerez Méndez, Miguel
dc.date.accessioned2023-06-19T13:40:17Z
dc.date.available2023-06-19T13:40:17Z
dc.date.issued2013-12-17
dc.description.abstractWe compare the results obtained by applying the same signal extraction procedures to two observationally equivalent state-space forms. The first model has different errors affecting the states and the observations, while the second has a single perturbation term which coincides with the one-step-ahead forecast error. The signals extracted from both forms are very similar but their variances are drastically different, because the states for the single-source error representation collapse to exact values while those coming from the multiple-error model remain uncertain. The implications of this result are discussed both, with theoretical arguments and practical examples. We find that single error representations have advantages to compute the likelihood or to adjust for seasonality, while multiple error models are better suited to extract a trend indicator. Building on this analysis, it is natural to adopt a ‘best of both worlds’ approach, which applies each representation to the task in which it has comparative advantage.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/61904
dc.identifier.doi10.1080/00949655.2013.867960
dc.identifier.issn1563-5163
dc.identifier.officialurlhttps://doi.org/10.1080/00949655.2013.867960
dc.identifier.relatedurlhttps://doi.org/10.1080/00949655.2013.867960
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34237
dc.issue.number5
dc.journal.titleJournal of Statistical Computation and Simulation
dc.language.isoeng
dc.page.final1069
dc.page.initial1053
dc.publisherTaylor & Francis
dc.relation.projectIDECO2011-23972
dc.rights.accessRightsopen access
dc.subject.keywordState-space model
dc.subject.keywordSignal extraction
dc.subject.keywordSeasonal adjustment
dc.subject.keywordKalman filter
dc.subject.keywordTrend
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleSingle and multiple error state-space models for signal extraction
dc.typejournal article
dc.volume.number85
dcterms.referencesAnderson, B.D.O. and J.B. Moore, 1979, Optimal Filtering, Prentice-Hall, Englewood Cliffs (NJ). Anderson, H.M. Low, C.M. and Snyder, R., 2006, Single source of error state space approach to the Beveridge Nelson decomposition, Economics Letters, 104-109. Aoki, M. and A. Havenner, 1991, State Space Modeling of Multivariate Time Series, Econometric Reviews, 10, 1-59. Bierman, G.J., 1977, Factorization Methods for Discrete Sequential Estimation, Prentice-Hall, Englewood Cliffs (NJ). Box, G.E.P. Hillmer, S.C. and G.C. Tiao, 1978, Analysis and Modeling of Seasonal Time Series, in Seasonal Analysis of Time Series, A. Zellner (ed.) Bureau of the Census, Washington DC. Casals, J. Sotoca, A. and M. Jerez, 1999, A Fast and Stable Method to Compute the Likelihood of Time Invariant State-Space Models, Economics Letters 65, 329-337. Casals, J., M. Jerez and S. Sotoca, 2000, Exact Smoothing for Stationary and Nonstationary Time Series, International Journal of Forecasting 16, 1, 59-69. Casals, J. and S. Sotoca, 2001, The Exact Likelihood for a State Space Model with Stochastic Inputs, Computers and Mathematics with Applications, 42, 199-209. Casals, J. M. Jerez and S. Sotoca, 2002, An Exact Multivariate Model-based Structural Decomposition, Journal of the American Statistical Association, 97, 458, 553-564. De Jong, P., 1989, Smoothing and Interpolation with the State Space Model, Journal of the American Statistical Association, 84, 408, 1085-1088. De Jong, P. and S. Chu-Chun-Lin, 1994, Fast Likelihood Evaluation and Prediction for Nonstationary State Space Models, Biometrika, 81, 133-142. De Jong, P. and J. Penzer, 2000, The ARIMA Model in State Space Form, London School of Economics, Department of Statistics, Research Report number 40, www.lse.ac.uk/statistics/documents/researchreport40.pdf De Schutter, B., 2000, Minimal State-Space Realization in Linear System Theory: An Overview, Journal of Computational and Applied Mathematics, Special Issue on Numerical Analysis in the 20th Century - Vol. I: Approximation Theory, vol. 121, no. 1-2, 331-354. De Souza, C.E. Gevers, M.R. and G.C. Goodwin, 1986, Riccati Equations in Optimal Filtering of Nonstabilizable Systems having Singular State Transition Matrices, IEEE Transactions on Automatic Control, AC-31, 9, 831-838. Harvey, A.C., 1989, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge (UK). Harvey, A. and T. Trimbur, 2008, Trend Estimation and the Hodrick-Prescott Filter, Journal of the Japan Statistical Society, 38, 1, 41–49. Hannan, E.J. and Deistler, M., 1988, The Statistical Theory of Linear Systems. John Wiley, New York. Hodrick, R.J. and E.C. Prescott, 1997, Post-war U.S. Business Cycles: An Empirical Investigation, Journal of Money, Credit and Banking, 29, 1-16. Kailath, T., 1980, Linear Systems. Prentice–Hall, Englewood Cliffs. Morley, J.A., 2010, The Two Interpretations of the Beveridge Nelson Decomposition, Macroeconomic Dynamics, 1-21. Ord, J.K. Koehler, A.B. and R.D. Snyder, 1997, Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Sodels. Journal of the American Statistical Association, 92, 440, 1621-1629. Park, P.G. and T. Kailath, 1997, Convergence of the DRE Solution to the ARE Strong Solution, IEEE Transactions on Automatic Control, 42, 573-578. Proietti T., 2006, Trend–Cycle Decompositions with Correlated Components. Econometric Reviews, 25, 61-84. Terceiro, J., 1990, Estimation of Dynamic Econometric Models with Errors in Variables, Springer-Verlag, Berlin.
dspace.entity.typePublication
relation.isAuthorOfPublication138478db-3f49-41e4-a76e-ff6d03e56bb8
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscovery138478db-3f49-41e4-a76e-ff6d03e56bb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Casals, J. Sotoca, S. Jerez, M. SingleMultiple_Source_Error_Models_NUEVA_VERSION.pdf
Size:
525.72 KB
Format:
Adobe Portable Document Format

Collections