Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Single and multiple error state-space models for signal extraction

Loading...
Thumbnail Image

Full text at PDC

Publication date

2013

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Citations
Google Scholar

Citation

Abstract

We compare the results obtained by applying the same signal extraction procedures to two observationally equivalent state-space forms. The first model has different errors affecting the states and the observations, while the second has a single perturbation term which coincides with the one-step-ahead forecast error. The signals extracted from both forms are very similar but their variances are drastically different, because the states for the single-source error representation collapse to exact values while those coming from the multiple-error model remain uncertain. The implications of this result are discussed both, with theoretical arguments and practical examples. We find that single error representations have advantages to compute the likelihood or to adjust for seasonality, while multiple error models are better suited to extract a trend indicator. Building on this analysis, it is natural to adopt a ‘best of both worlds’ approach, which applies each representation to the task in which it has comparative advantage.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections